NIESSI & PADIONI COMMANCABIS

PROUD OF "OUR" MADE IN ITALY

Messi & Paoloni has celebrated on March 10th 2016, 70 years in business, 60 of which have been spent in telecommunications.

71 years ago, the 18th of July 1944, Ancona was seized by the II polish army corps. During the anglo-american occupation, two young boys, the 17 years old Messi Michele and the 21 years old Dino Paoloni, were employed as civil personnel in the allied military transmitting station of Ancona harbour. It was here, during this job, that they first met each other, sharing their passion for telecommunications. Two years later, the two friends decided to establish the Messi & Paoloni company. During the first ten years of their activity, these young boys, selected their purchases at the post-war Photokina exhibition in Cologne, and rushed all around central Italy, selling, installing and servicing film projectors in all the new cinemas being rebuilt after the destruction of the war. In June 1956 they became Fracarro agents for Marche and Umbria, settling back to their first love: Radiofrequency. During this long term cooperation with Fracarro (the major italian TV antenna manufacturer), they decided to establish in 1974 the coaxial cable factory (primarily 75 Ohm). Several years later, the passion for radiofrequency affected the two partners sons, Paolo Paoloni and Stefano Messi. This led to the start of 50 Ohm cables production. In 1985 we started our business relationship with the first German customer (Kabel Kusch): a long lasting and satisfactory 50 Ohm experience together. With the acquisition of 100 % of the shares in 1995, Stefano and Maurizio Messi took up the torch from the "founders", carrying out passionately complex projects and continuing the legacy of innovation.

The continuous improvements in the different production cycles and continuous investments in research and technological innovation, brought the **"GAS EXPANDED TL"** technology.

The new models designed for the HAM RADIO world, (M&P-BROAD-PRO 50C, M&P-ULTRAFLEX 10, M&P-ULTRAFLEX 13/.500", M&P-ULTRAFLEX 7, M&P-AIRBORNE 5, M&P-AIRBORNE 10), are all made with screening efficiency >105 dB!

This leads to an excellent immunity against electromagnetic interferences and **low frequency impulsive noises, (responsible for the increasing of the background noise levels).**

Moreover, having very well screened cables, such as these items, gives the Ham Radio world the chance to dramatically reduce the noise level emissions from the cable itself, minimizing troubles in urban flats and urban areas.

Differently, cables such as RG 213/U or RG 8, have 55 dB of screening efficiency, RG 58 C/U has 50 dB of screening efficiency and the extra shielded RG 214 A/U despite its impressive dual screen, can not show off more than 80 dB!

In order to achieve such top level screening efficiency values, we use in our production 24 spools braiding machines: that means 50% more crossovers if compared to traditional 16 spools braiding

machines used by the most famous cable manufacturers in the world.

Quality is the philosophy behind the construction of each one of our cables.

The difficulty does not lie in making a triple layer dielectric, but in closing and sealing the perfectly homogeneous foam, with its alveolar structure and sophisticated mechanics, between two protective layers (skins).

GAS

EXPANDED

In the image at your left, we can clearly distinguish at 150 x magnifications, the mechanical structure of the **Gas Expanded TL** (triple layer) technology.

The most well-known manufacturers are betting technological supremacy on these few millimeters, on this physicalmechanical microcosm!

The two protective layers are adding to these cables, excellent resistance to high moisture persistence environments.

(anyway, water tight connectors are warmly recommended, as moisture can penetrate through the connector itself, circumventing the above mentioned protective layers.).

It's quite clear that the outer sealing layer, is preserving the dielectric properties of the sophisticated structural geometry. The inner foam, is also enclosed by a protective inner barrier (in contact with the central conductor).

In the cables for underground laying, where more than in any other application, such moisture persistance might occur, in addition to these new protections, we apply a further expensive **Petrol Jelly (PJ)** layer over the braid.

Broad-pro 50 C

Competition Double Jacket

High resistance copper screen (Cu) made by means of 24 spools braiding machines. (50% more crossovers if compared to traditional 16 spools machines.) This braid is HIGHLY EFFECTIVE AGAINST LOW FREQUENCY IMPULSIVE NOISES. **SCREENING PERCENTAGE: 71%** 144 wires

High pressure physical injection foamed polyethylene TRIPLE LAYER DIELECTRIC FPE Ø 7,3 ± 0,05 mm

> Inner conductor : 99,99% pure electrolitic annealed bare copper. (annealed = thermal softening process) Cu Ø 2,76 mm (0,108 inches)

ELECTRICAL DATA

Impedance @200MHz: Minimum bending radius: Multiple bends/single bend Temperature: installation operative Capacitance: Velocity ratio: Screening efficiency: 100-2000 MHz Class Inner conductor resistance: Outer conductor resistance: Tension test (spark test): Weight (100m): Maximum peak power:

50 Ohm ± 3 124/80 mm -40° to +60° C -55° to +85° C 74 pF/m ± 2

85 % >105 dB A++ 3 Ohm/Km 9,2 Ohm/Km 8 kV 17 Kg 14500 WATT

Black protective PVC jacket, waterproof and UV resistant. This cable can be laid underground. The red PE jacket clearly shows potential cracks on the above external sheath. (which might occur during pulling on rocky and rough environments).

am Radi

Ca

In order to prevent braid oxidation, we apply a thin Petrol Jelly layer (flooding), adding an extra waterproofing protection.

The copper foil has an applied PE-coating, placed in order to prevent foil cracking due to short radius bends. SCREENING PERCENTAGE 100% CU-POL

> SRL 0.3-600 MHz >30 dB 600-1200 MHz >25 dB 1200-2000 MHz >20 dB

ATT	ENU/	ATION	at 20°

red PE Ø 9,9 mm

± 0,20

(0,488 inches) black PVC Ø 12,4 mm

CE

- Contraction

FREQUENCY	dB/100m	dB/100ft
1,8 MHz	0,65	0,20
3,5 MHz	0,85	0,26
7,0 MHz	1,08	0,33
10 MHz	1,2	0,37
14 MHz	1,39	0,42
21 MHz	1,75	0,53
28 MHz	1,93	0,59
50 MHz	2,5	0,76
100 MHz	3,6	1,10
144 MHz	4,4	1,34
200 MHz	5,2	1,58
400 MHz	7,5	2,29
430 MHz	7,8	2,38
800 MHz	10,9	3,32
1000 MHz	12,3	3,75
1296 MHz	14,1	4,30
2400 MHz	19,8	6,04
3000 MHz	22,5	6,86
4000 MHz	26,8	8,17
5000 MHz	30,5	9,30
6000 MHz	34,1	10,39
7000 MHz	37,6	11,46
8000 MHz	41,0	12,50
10.000 MHz	46,8	14,26
12.000 MHz	52,2	15,19

POWER HANDLING (at 40C°/104 F°)								
FREQUENCY	MAXP	FREQUENCY	MAXP					
1,8 MHz	10831 W	430 MHz	947 W					
3,5 MHz	8471 W	800 MHz	679 W					
7,0 MHz	6667 W	1000 MHz	600 W					
10 MHz	6000 W	1296 MHz	522 W					
14 MHz	5180 W	2400 MHz	364 W					
21 MHz	4114 W	3000 MHz	314 W					
28 MHz	3731 W	4000 MHz	261 W					
50 MHz	2769 W	5000 MHz	225 W					
100 MHz	2045 W	6000 MHz	199 W					
144 MHz	1682 W	7000 MHz	178 W					
200 MHz	1412 W	8000 MHz	161 W					
400 MHz	986 W	10.000 MHz	136 W					

For step by step assembly instructions of connectors, please visit our website www.messi.it

Given a power fed to the X value (any value expressed in Watts), the actual power output of the cable is shown in the table in the form of remaining percentage. (for example, if we use a cable such as M&P-BROAD-PRO 50/c, entering 1000 Watts over a length of 35m, at a frequency of 144 MHz, there remains 70.7% of 1000). For maximum applicable power, see the Power Handling of the cable concerned. From these values, have already been deducted the SRL values, typical of each one of our Messi & Paoloni coaxial cables www.messi.it **REMEMBER: Make sure to match the line accurately!**

	M&P-BROAD-PRO 50/C / M&P-BROAD-PRO 50/C Double Jacket															
	leng	th>	16,4	32,8	49,2	65,6	82	114,8	164	246	328	426,5	524,9	656,2	984,2	feet
	Wave length	MHz	5	10	15	20	25	35	50	75	100	130	160	200	300	m
	85.71 m	3,5	98.9	98	97	96.1	95.2	93.3	90.6	86.4	82.2	77.6	73	67.6	55.5	
	42.85 m	7	98.7	97.5	96.3	95.1	93.9	91.6	88.3	82.9	77.9	72.4	67.1	60.8	47.4	C
	21.42 m	14	98.4	96.8	95.3	93.7	92.4	89.3	85.1	78.6	72.6	65.9	59.9	52.7	38.2	sef
ze	10.71 m	28	97.8	95.6	93.5	91.4	89.4	85.5	80	71.7	64	56.2	49.1	41	26.3	
enz	6 m	50	97.2	94.5	91.8	89.3	86.8	82	75.4	65.4	56.8	48	40.5	32.3	18.4	Useful signal output (residual
Frequen	2 m	144	95	90.5	86.2	82	78	70.7	61	47.6	37.2	27.7	20.6	13.8	5.1	าล
ree	69 cm	430	91.5	83.8	76.7	70.3	64.4	54	41.5	26.8	17.2	10.1	5.9			out
/Ε	23.1 cm	1296	84,4	71,6	60,8	51,6	43,8	31,5	19,1	8,1	3,3					pu
es	12.5 cm	2400	78	61.8	48.9	38.6	30.4	18.7	8.6							t (r
uci Di Li Li	10 cm	3000	75.2	57.4	43.8	33.2	25.2	14.2	5.6							esi.
Frequencies	7.5 cm	4000	71.2	51.4	37	26.5	18.9	9.23								dua
eq	6 cm	5000	67.2	45.9	31.1	20.9	13.8	5.6								d le
1 2	5 cm	6000	63.4	40.9	26.2	16.4	9.9									٩ ٧
	3.75 cm	8000	57	33	19	10										power %)
	3 cm	10.000	50	26	12											3
	2.5 cm	12.000	43	18												

M&P-BROAD-PRO 50/C (Power Handling/Temperature)

				Temperature C° / F°									
	Wave length	MHz	-10 / 14	-5 / 23	0 / 32	10 / 50	20 / 68	30 / 86	40 / 104	50 / 122	60 / 140	70 / 158	
	166.66 m	1,8	13300	13300	13300	13300	12900	12174	10831	9239	7647	6065	
	85.71 m	3,5	13112	12672	12299	11520	10605	9521	8471	7225	5980	4744	
	42.85 m	7	10320	9973	9680	9067	8347	7493	6667	5687	4707	3733	
	30 m	10	9288	8976	8712	8160	7512	6744	6000	5118	4236	3360]
	21.42 m	14	8018	7749	7521	7045	6485	5822	5180	4418	3657	2901	
	14.28 m	21	6369	6155	5974	5595	5151	4624	4114	3509	2905	2304	
D	10.71 m	28	5775	5581	5417	5074	4671	4193	3731	3182	2634	2089	
Frequenze	6 m	50	4287	4143	4021	3766	3467	3113	2769	2362	1955	1551	
e	3 m	100	3166	3060	2970	2782	2561	2299	2045	1745	1444	1145	
dr	2.08 m	144	2604	2517	2443	2288	2106	1891	1682	1435	1188	942	
Le	1.5 m	200	2185	2112	2050	1920	1768	1587	1412	1204	997	791	
н Н Н	75 cm	400	1527	1476	1432	1341	1235	1109	986	841	696	552	WATT
	69 cm	430	1467	1417	1376	1288	1186	1065	947	808	669	531	P
Frequencies	37.5 cm	800	1051	1016	986	924	850	763	679	579	480	380	
bu	30 cm	1000	929	898	871	816	751	674	600	512	424	336	
D	23.1 cm	1296	808	781	758	710	653	586	522	445	368	292	
b	12.5 cm	2400	563	544	528	495	455	409	364	310	257	204	
Le	10 cm	3000	487	470	457	428	394	353	314	268	222	176	
<u> </u>	7.5 cm	4000	404	390	379	355	327	293	261	223	184	146	
	6 cm	5000	348	337	327	306	282	253	225	192	159	126	
	5 cm	6000	308	298	289	270	249	224	199	170	140	111	
	4.2 cm	7000	275	266	258	242	223	200	178	152	126	100	
	3.75 cm	8000	249	241	234	219	202	181	161	137	114	90	
	3.3 cm	9000	227	220	213	200	184	165	147	125	104	82	
	3 cm	10.000	211	204	198	185	171	153	136	116	96	76	

Connector assembly Connector "N" type : C.N.BROAD50DJ-MS

Insert in the cable compo- Make a circular cut on the nents A and make a circular red PE jacket and slide it cut on the black PVC outer jacket at the indicated length ture. The remaining visible shown in the caliber (in mm). Subsequently remove it.

away as shown in the picred jacket must be of the length indicated by the caliber.

After having made the first Insert component B cut, as shown in picture 3, rotate the cable 180 degrees and make a second cut in the same way.

as shown in the picture.

Insert component C after having opened the braid as shown in the picture.

Push component C betwe- Cut and remove the tape en the foil and the braid and dieletric for a lenght until it stops against the as shown in the picture red PE jacket.

(6mm).

Insert one of the two teflon discs and subsequently the central pin. Solder the pin to the inner conductor, inserting tin in the provided hole. Avoid heating the pin for a too long time in order not to damage with excessive heat the cable dielectric. (which is not made in teflon!)

disc as shown in the picture.

Insert the second teflon Insert the connector and fasten accurately until the component A, will be pressed against the connector body.

type: C.UHF.BROAD50-M **Connector "UHF"**

8

Make a circular cut on the Make a circular cut on the black PVC outer jacket at the indicated length shown in the caliber (in mm). Subsequently remove it.

2

red PE jacket leaving the remaining red jacket length indicated in caliber. Subsequently remove it.

first cut, as shown in picture 3, rotate the cable 180 degrees and make a second cut in the same way

and B as shown in the picture. Subsequently insert component C after having opened the braid as shown in the picture.

Fasten together the connector and component A, until it will be pressed against the connector body. Inside, the rubber component B (pic. 6) will expand, granting optimal sealing against moisture and a perfect contact to ground.

5

After having made the Insert components A Push component C between the foil and the braid until it stops against the red PE jacket.

shown in the picture.

Cut and remove the tape Insert the connector and solder it and dieletric for a lenght as with tin to the inner conductor (see picture above). Avoid heating for a too long time in order not to damage with excessive heat the cable dielectric. (which is not made in teflon!)

UV resistant PVC jacket. PVC Ø 10,3 ± 0,15 mm (0,405 inches)

LAG LAN

- Martin

EXTRA FLEXIBLE

Oft

1,10

1,34

1,58

2.29

2,38

3,32

3,75

4,30

6.04

6.86

8,17

9,30

10,39

11,46

12,50

14,26

15,19

High resistance copper screen (Cu) made by means of 24 spools braiding machines. (50% more crossovers if compared to traditional 16 spools machines.) This braid is HIGHLY EFFECTIVE AGAINST LOW FRE-QUENCY IMPULSIVE NOISES. **SCREENING PERCENTAGE: 71% 144 wires**

Competition

Broad-pro 50 C

The copper foil has an applied PEcoating, placed in order to prevent foil cracking due to short radius bends. SCREENING PERCENTAGE 100% CU-POL

am Radi

Cab

High pressure physical injection foamed polyethylene TRIPLE LAYER DIELECTRIC FPE Ø 7,3 ± 0,05 mm

> SRL 0,3-600 MHz 00 MHz 00 MHz

> > QUENCY

1,8 MHz

3,5 MHz

7,0 MHz

10 MHz

14 MHz

21 MHz

28 MHz

50 MHz

100 MHz

144 MHz

200 MHz

400 MHz

>30 dB >25 dB >20 dB

MAXP

10831 W

8471 W

6667 W

6000 W

5180 W

4114 W

3731 W

2769 W

2045 W

1682 W

1412 W

986 W

POWER HANDLING (at 40C°/104 F°))

dB/100m	dB/100
0,65	0,20
0,85	0,26
1,08	0,33
1,2	0,37
1,39	0,42
1,75	0,53
1,93	0,59
2,5	0,76
	0,65 0,85 1,08 1,2 1,39 1,75 1,93

3.6

4.4

5.2

7.5

7,8

10.9

12,3

14,1

19,8

22,5

26.8

30.5

34,1

37,6

41,0

46,8

52.2

MAXP

947 W

679 W

600 W

522 W

364 W

314 W

261 W

225 W

199 W

178 W

161 W

136 W

100 MHz

144 MHz

200 MHz

400 MHz

430 MHz

800 MHz

1000 MHz

1296 MHz

2400 MHz

3000 MHz

4000 MHz

5000 MHz

6000 MHz

7000 MHz

8000 MHz

10.000 MHz

12.000 MHz

FREQUENCY

430 MHz

800 MHz

1000 MHz

1296 MHz

2400 MHz

3000 MHz

4000 MHz

5000 MHz

6000 MHz

7000 MHz

8000 MHz

10.000 MHz

ATTENUATION at 20°C

Inner conductor : 99,99% pure electrolitic annealed bare copper. (annealed = thermal softening process) Cu Ø 2,76 mm (0,108 inches)

ELECTRICAL DATA

Impedance @200MHz :	50 Ohm ± 3	600-120
Minimum bending radius:		1200-200
Multiple bends/single bend	103/65 mm	
Temperature: ins	tallation -40° to +60° C	
ot	perative -55° to +85° C	FRE
Capacitance:	74 pF/m ± 2	
Velocity ratio:	85 %	
Screening efficiency:		
100-2000 MHz	>105 dB	
Class	A++	
Inner conductor resistance	e: 3 Ohm/Km	
Outer conductor resistance	e: 9,2 Ohm/Km	
Tension test (spark test):	8 kV	
Weight (100m):	13 Kg	
Maximum peak power:	14500 WATT	

For step by step assembly instructions of connectors, please visit our website www.messi.it

Given a power fed to the X value (any value expressed in Watts), the actual power output of the cable is shown in the table in the form of remaining percentage. (for example, if we use a cable such as M&P-BROAD-PRO 50/c, entering 1000 Watts over a length of 35m, at a frequency of 144 MHz, there remains 70.7% of 1000). For maximum applicable power, see the Power Handling of the cable concerned. From these values, have already been deducted the SRL values, typical of each one of our models, for the respective frequencies.

REMEMBER: Make sure to match the line accurately!

		M&I	P-BR	OAE)-PR	0 50	o/C /	M &	P-BR	OAI	D-PR	0 50	D/C D	ouble Ja	acket	
	leng	th>	16,4	32,8	49,2	65,6	82	114,8	164	246	328	426,5	524,9	656,2	984,2	feet
	Wave length	MHz	5	10	15	20	25	35	50	75	100	130	160	200	300	m
	85.71 m	3,5	98.9	98	97	96.1	95.2	93.3	90.6	86.4	82.2	77.6	73	67.6	55.5	
	42.85 m	7	98.7	97.5	96.3	95.1	93.9	91.6	88.3	82.9	77.9	72.4	67.1	60.8	47.4	C
	21.42 m	14	98.4	96.8	95.3	93.7	92.4	89.3	85.1	78.6	72.6	65.9	59.9	52.7	38.2	sef
a V	10.71 m	28	97.8	95.6	93.5	91.4	89.4	85.5	80	71.7	64	56.2	49.1	41	26.3	Useful signal output (residual
Frequenze	6 m	50	97.2	94.5	91.8	89.3	86.8	82	75.4	65.4	56.8	48	40.5	32.3	18.4	sig
nb	2 m	144	95	90.5	86.2	82	78	70.7	61	47.6	37.2	27.7	20.6	13.8	5.1	าลไ
re	69 cm	430	91.5	83.8	76.7	70.3	64.4	54	41.5	26.8	17.2	10.1	5.9			out
μ	23.1 cm	1296	84,4	71,6	60,8	51,6	43,8	31,5	19,1	8,1	3,3					pu
es	12.5 cm	2400	78	61.8	48.9	38.6	30.4	18.7	8.6							t (r
Frequencies	10 cm	3000	75.2	57.4	43.8	33.2	25.2	14.2	5.6							esi
ne	7.5 cm	4000	71.2	51.4	37	26.5	18.9	9.23								dua
eq	6 cm	5000	67.2	45.9	31.1	20.9	13.8	5.6								
Ъ	5 cm	6000	63.4	40.9	26.2	16.4	9.9									Ň
	3.75 cm	8000	57	33	19	10										power %)
	3 cm	10.000	50	26	12											~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	2.5 cm	12.000	43	18												

M&P-BROAD-PRO 50/C Double Jacket (Power Handling/Temperature)

				Temperature C° / F°									
	Wave length	MHz	-10 / 14	-5 / 23	0 / 32	10 / 50	20 / 68	30 / 86	40 / 104	50 / 122	60 / 140	70 / 158	
	166.66 m	1,8	13300	13300	13300	13300	12900	12174	10831	9239	7647	6065	
	85.71 m	3,5	13112	12672	12299	11520	10605	9521	8471	7225	5980	4744	
	42.85 m	7	10320	9973	9680	9067	8347	7493	6667	5687	4707	3733	
	30 m	10	9288	8976	8712	8160	7512	6744	6000	5118	4236	3360	
	21.42 m	14	8018	7749	7521	7045	6485	5822	5180	4418	3657	2901	
	14.28 m	21	6369	6155	5974	5595	5151	4624	4114	3509	2905	2304	
C	10.71 m	28	5775	5581	5417	5074	4671	4193	3731	3182	2634	2089	
Frequenze	6 m	50	4287	4143	4021	3766	3467	3113	2769	2362	1955	1551	
lei	3 m	100	3166	3060	2970	2782	2561	2299	2045	1745	1444	1145	
dr	2.08 m	144	2604	2517	2443	2288	2106	1891	1682	1435	1188	942	
e	1.5 m	200	2185	2112	2050	1920	1768	1587	1412	1204	997	791	
H	75 cm	400	1527	1476	1432	1341	1235	1109	986	841	696	552	N
	69 cm	430	1467	1417	1376	1288	1186	1065	947	808	669	531	WATT
Frequencies	37.5 cm	800	1051	1016	986	924	850	763	679	579	480	380	-
bu	30 cm	1000	929	898	871	816	751	674	600	512	424	336	
ne	23.1 cm	1296	808	781	758	710	653	586	522	445	368	292	
b	12.5 cm	2400	563	544	528	495	455	409	364	310	257	204	
e e	10 cm	3000	487	470	457	428	394	353	314	268	222	176	
	7.5 cm	4000	404	390	379	355	327	293	261	223	184	146	
	6 cm	5000	348	337	327	306	282	253	225	192	159	126	
	5 cm	6000	308	298	289	270	249	224	199	170	140	111	
	4.2 cm	7000	275	266	258	242	223	200	178	152	126	100	
	3.75 cm	8000	249	241	234	219	202	181	161	137	114	90	
	3.3 cm	9000	227	220	213	200	184	165	147	125	104	82	ĺ
	3 cm	10.000	211	204	198	185	171	153	136	116	96	76	

Connector "N" type : C.N.BROAD50-M

Insert in the cable components A, B, C and immediately having opened the braid after, make a circular cut on as shown in the pictuthe black PVC jacket at the indicated length shown in the caliber (in mm). Subsequently remove it.

the black PVC jacket.

Insert component D after re. Push component D between the foil and the braid until it stops against

Flatten the wires as shown in the picture and cut the excess.

Cut and remove the tape and dieletric for a length as shown in the picture (6mm).

Insert one of the two teflon discs and subsequently the central pin. Solder the pin to the inner conductor, inserting tin in the provided hole. Avoid heating the pin for a too long time in order not to transfer excessive heat to the highly conductive copper underneath. Excessive heat deforms the dielectric which is made of foam PE and not in teflon!.

Insert the second teflon disc as shown in the picture.

connector body. Inside, the rubber component C (pic. 1) will expand, granting optimal sealing against moisture and a perfect contact to ground.

Insert the connector and fasten accurately until the o-ring present in component A, will be pressed against the

Insert in the cable components A, B, C and immediately after, make a circular cut on the black PVC jacket at the indicated length shown in the caliber (in mm). Subsequently remove it.

Insert the connector and solder it with tin to the inner conductor (see picture above). Avoid heating the pin for a too long time in order not to transfer excessive heat to the highly conductive copper underneath. Excessive heat deforms the dielectric which is made of foam PE and not in teflon!.

Insert component D after having opened the braid as shown in the picture. Push component D between the foil and the braid until it stops against the black PVC jacket.

(1)

Fasten together the connector and component A, until it will be pressed against the connector body. Inside, the rubber component C (pic. 1) will expand, granting optimal sealing against moisture and a perfect contact to ground.

Flatten the wires as shown in the picture and cut the excess.

Cut and remove the tape and dieletric for a lenght as shown in the picture.

M&P UltraFlex (HIGHFLEXX 7)

High resistance copper screen (Cu) made by means of 24 spools braiding machines. (50% more crossovers if compared to traditional 16 spools machines.)This braid is HIGHLY EFFECTIVE AGAINST IMPULSIVE NOISES. SCREENING PERCENTAGE: 83% 144 wires

High pressure physical injection foamed polyethylene. TRIPLE LAYER DIELECTRIC FPE Ø 5 ± 0,05 mm

> The copper foil has an applied PE-coating, placed in order to prevent foil cracking due to short radius bends. SCREENING PERCENTAGE 100% CU-POL

am Rad

Inner conductor made of 19X0,38 stranded geometric and concentric copper wires. Purity 99,99% annealed. (annealed = thermal softening process)

Cu 19x0,38 mm - Ø 1,9 mm (19x0.015 inches) (0.075 inches)

ELECTRICAL DATA

Impedance @200MHz : 50 Ohm ± 3 Minimum bending radius: Multiple bends(15)/single bend 68/34 mm Temperature: installation -40° to + 60° C -55° to + 85° C operative 75 pF/m ± 2 Capacitance: Velocity ratio: 83 % Screening efficiency: 100-2000 MHz >105 dB Inner conductor resistance: 7,3 Ohm/Km Outer conductor resistance: 9,8 Ohm/Km Tension test (spark test): 4 kV 6,9 Kg Weight (100m): 8000 WATT Maximum peak power:

For step by step assembly instructions of connectors, please visit our website www.messi.it

ULTRAFLEXIBLE
UV resistant PVC jacket.
PVC Ø 7,3 ± 0,15 mm
(0.287 inches)

A COMPANY AND

ATTENU	ATION at 2	20°C
REQUENCY	dB/100m	dB/100ft
1,8 MHz	0,95	0,29
3,5 MHz	1,28	0,39
7,0 MHz	1,6	0,49
10 MHz	1,9	0,58
14 MHz	2,2	0,67
21 MHz	2,6	0,79
28 MHz	3,0	0,91
50 MHz	4,0	1,22
100 MHz	5,8	1,77
144 MHz	6,9	2,10
200 MHz	8,2	2,50
400 MHz	11,8	3,60
430 MHz	12,3	3,75
800 MHz	17,1	5,21
1000 MHz	19,3	5,88
1296 MHz	22,33	6,81
2400 MHz	32,3	9,85
3000 MHz	36,2	11,03
4000 MHz	42,6	12,98
5000 MHz	49,3	15,03
6000 MHz	55,3	16,86
7000 MHz	61,6	18,78
8000 MHz	68,4	20,85

MAXP

POWER HANDLING (at 40C°/104 F°)								
REQUENCY	MAXP	FREQUENCY						
4 0 1 41 1	4530 144	100 101						

>28 dB >22 dB

>18 dB

SRL

0,3-600 MHz

600-1200 MHz

1200-2000 MHz

1,8 MHz	4572 W	430 MHz	353 W
3,5 MHz	3393 W	800 MHz	254 W
7,0 MHz	2714 W	1000 MHz	225 W
10 MHz	2286 W	1296 MHz	195 W
14 MHz	1974 W	2400 MHz	134 W
21 MHz	1670 W	3000 MHz	120 W
28 MHz	1448 W	4000 MHz	102 W
50 MHz	1086 W	5000 MHz	88 W
100 MHz	749 W	6000 MHz	79 W
144 MHz	629 W	7000 MHz	71 W
200 MHz	530 W	8000 MHz	63 W
400 MHz	368 W		

Given a power fed to the X value (any value expressed in Watts), the actual power output of the cable is shown in the table in the form of remaining percentage. (for example, if we use a cable such as M&P-ULTRAFLEX 7, entering 1000 Watts over a length of 35m, at a frequency of 144 MHz, there remains 57,3% of 1000). For maximum applicable power, see the Power Handling of the cable concerned. From these values, have already been deducted the SRL values, typical of each one of our models, for the respective frequencies.

		M&P-ULTRAFLEX 7 (HIGHFLEXX 7)														
	lengtl	ו>	16,4	32,8	49,2	65,6	82	114,8	164	246	328	426,5	524,9	656,2	984,2	feet
	Wave length	MHz	5	10	15	20	25	35	50	75	100	130	160	200	300	m
	85.71 m	3,5	98.8	97.9	96.9	95.9	94.9	93	90.1	85.6	81.3	76.4	71.7	66	53.7	
b	42.85 m	7	98.5	97.2	95.9	94.6	93.3	90.8	87.1	81.5	75.8	69.8	64.2	57.5	43.6	Use
	21.42 m	14	97.6	95.2	93	90.8	86.6	84.4	78.5	69.6	61.6	53.3	46.1	38	23.4	Useful signal output (residual power
Frequenz	10.71 m	28	96.5	93.3	90.1	87.1	84.1	78.5	70.7	59.5	50	40.6	33	25	12.5	sign
eq	6 m	50	95.4	91.1	87.1	83.1	79.3	72.9	63	50	39.7	30.1	22.8	15.7	6.2	alo
	2.08 m	144	92.3	85.2	78.7	72.7	67.2	57.3	45.1	30.8	20.3	12.6	7.8	4.1		utp
/ SS	69 cm	430	86.6	75	65.2	56.6	49	37	24.1	11.7	5.7					ut (
cié.	23.1 cm	1296	76,7	59,2	45,6	35,1	27	15,9	7							resi
Frequencies	12.5 cm	2400	67.4	45.9	31.2	21	14	5.8								dua
nb	10 cm	3000	63.4	40.9	26.1	16.4	9.9									l po
Fre	7.5 cm	4000	58.1	34.3	19.8	10.9	5.4									Ve
	6 cm	5000	52.7	28.2	14.2	6.3										r%)
	5 cm	6000	48.9	24	10.8	3.9										

REMEMBER: Make sure to match the line accurately!

M&P-ULTRAFLEX 7 (Power Handling/Temperature)

				Temperature C° / F°									
	Wave length	MHz	-10 / 14	-5 / 23	0 / 32	10 / 50	20 / 68	30 / 86	40 / 104	50 / 122	60 / 140	70 / 158	
	166.66 m	1,8	6838	6838	6638	6217	5724	5138	4572	3900	3228	2560	
	85.71 m	3,5	5252	5076	4927	4614	4248	3814	3393	2894	2395	1900	
	42.85 m	7	4202	4061	3941	3692	3398	3051	2714	2315	1916	1520	
	30 m	10	3538	3420	3319	3109	2862	2569	2286	1950	1614	1280	
	21.42 m	14	3056	2953	2866	2685	2472	2219	1974	1684	1394	1105	
Φ	14.28 m	21	2586	2499	2425	2272	2091	1878	1670	1425	1179	935	
requenze	10.71 m	28	2241	2166	2102	1969	1812	1627	1448	1235	1022	811	
lei	6 m	50	1681	1624	1577	1477	1359	1220	1086	926	767	608	
d	3 m	100	1159	1120	1087	1018	937	842	749	639	529	419	
	2.08 m	144	974	942	914	856	788	707	629	537	444	352	
L /	1.5 m	200	820	792	769	720	663	595	530	452	374	297	2
	75 cm	400	570	551	534	501	461	414	368	314	260	206	WATT
ie	69 cm	430	547	528	513	480	442	397	353	301	249	198	_
2 L	37.5 cm	800	393	380	369	345	318	285	254	217	179	142	
Je	30 cm	1000	348	337	327	306	282	253	225	192	159	126	
b	23.1 cm	1296	301	291	283	265	244	219	195	166	137	109	
Frequencies	12.5 cm	2400	208	201	195	183	168	151	134	115	95	75	
ш.	10 cm	3000	186	179	174	163	150	135	120	102	85	67	
	7.5 cm	4000	158	153	148	139	128	115	102	87	72	57	
	6 cm	5000	136	132	128	120	110	99	88	75	62	49	
	5 cm	6000	122	117	114	107	98	88	79	67	55	44	
	4.2 cm	7000	109	105	102	96	88	79	71	60	50	39	
	3.75 cm	8000	98	95	92	86	79	71	63	54	45	36	

Connector "N" type : C.N.AC7.M-S

83

tely after, make a circular cut as shown in the picture. on the jacket at the indicated length shown in the caliber. (in mm) Subsequently remove it.

Insert in the cable compo- Insert component D after Push

the jacket. Flatten the wi- the caliber (mm). res as shown in the picture and cut the excess.

D Cut and remove the Insert one of the two teflon discs nents A, B, C and immedia- having opened the braid between the foil and the tape and dieletric for a and subsequently the central pin. braid until it stops against lenght as illustrated in Solder the pin to the inner conductor, inserting tin in the provided hole. Avoid heating the pin for a too long time in order not to damage with excessive heat the cable dielectric (which is not made in teflon!)

Insert the second teflon disc as shown in the picture.

Insert the connector and fasten accurately until the o-ring present in component A, will be pressed against the connector body. Inside, the rubbercomponent C (pic. 1) will expand, granting optimal sealing against moisture and a perfect contact to ground.

Д

Cut made with special M&P scissors.

Common scissors: remember to use a file in order to remove the c opper in excess. Make sure to follow the stranding direction.

In order to get rid of any burrs or ridges, scratch off in the inner conductor.

Connector "UHF" type : C.UHF.AC7.M-S

B, C and immediately after, make a opened the braid as shown in the and the braid until it stops against letric for a lenght as shown in the circular cut on the jacket at the indi- picture. cated length shown in the caliber (in mm). Subsequently remove it.

Insert in the cable components A, Insert component D after having Push component D between the foil Cut and remove the tape and die-

the jacket. Flatten the wires as shown picture. in the picture and cut the excess.

Insert the connector and solder it with tin to the inner conductor (see picture above). Avoid heating for a too long time in order not to damage with excessive heat the cable dielectric (which is not made in teflon!)

(1)

Fasten together the connector and component A, until it will be pressed against the connector body. Inside, the rubber component C (pic 1) will expand, granting optimal sealing against moisture and a perfect contact to ground.

M&P UltraFlex 10

(H2010, NEOFLEX 10)

High resistance copper screen (Cu) made by means of 24 spools braiding machines.(50% more crossovers if compared to traditional 16 spools machines.) This braid is HIGHLY EFFECTIVE AGAINST LOW FREQUENCY IMPULSIVE NOISES. SCREENING

PERCENTAGE: 71%

144 wires

geometric and concentric annealed copper wires. Purity 99,99%. (annealed = thermal softening process) (7x0,039 inches) Cu 7x1,0 mm - Ø 3 mm (0,118 inches)

ELECTRICAL DATA

Impedance @200MHz:	50 Ohm ± 3
Minimum bending radius:	
	00/40
Multiple bends(15)/single bend	80/40 mm
Temperature range:	
installation	-40° to +60° C
operative	-55° to +85° C
Capacitance:	78 pF/m ± 2
Velocity ratio:	83 %
Screening efficiency:	
100-2000 MHz	>105 dB
Class	A++
Inner conductor resistance:	3,2 Ohm/Km
Outer conductor resistance:	9,2 Ohm/Km
Tension test (spark test):	8 kV
Weight (100m):	13 Kg
Maximum peak power:	13000 WATT

Screening foil, highly effective against high frequency interferences. The copper foil has an applied PE-coating, placed in order to prevent foil cracking due to short radius bends. SCREE-**NING PERCENTAGE 100%** CU-POL

High pressure physical injection foamed polyethylene, TRIPLE LAYER DIELECTRIC. FPE Ø 7,3 ± 0,05 mm

am Radi

1110 HAUN

SRL 0,3-600 MHz 600-1200 MHz 1200-2000 MHz

FR

>20 dB

>30 dB		
>25 dB		

EXTRAFLEXIBLE UV resistant PVC jacket. PVC Ø 10,3 ± 0,15 mm (0,405 inches)

ATTENUATION at 20°C

	i illioni ai	
FREQUENCY	dB/100m	dB/100ft
1,8 MHz	0,70	0,21
3,5 MHz	0,90	0,27
7,0 MHz	1,14	0,35
10 MHz	1,30	0,40
14 MHz	1,59	0,48
21 MHz	1,90	0,58
28 MHz	2,14	0,65
50 MHz	2,76	0,84
100 MHz	3,93	1,20
144 MHz	4,74	1,44
200 MHz	5,72	1,74
400 MHz	8,31	2,53
430 MHz	8,65	2,64
800 MHz	12,17	3,71
1000 MHz	13,81	4,21
1296 MHz	16,4	5,0
2400 MHz	23,75	7,24
3000 MHz	27,3	8,32
4000 MHz	32,9	10,03
5000 MHz	38,9	11,86
6000 MHz	44,5	13,56
7000 MHz	50,2	15,30
8000 MHz	55,8	17,01

POWER HANDLING (at 40C°/104 F°)

EQUENCY	MAXP	FREQUENCY	MAXP
1,8 MHz	9927 W	430 MHz	803 W
3,5 MHz	7721 W	800 MHz	571 W
7,0 MHz	7164 W	1000 MHz	503 W
10 MHz	5345 W	1296 MHz	445 W
14 MHz	4370 W	2400 MHz	293 W
21 MHz	3657 W	3000 MHz	255 W
28 MHz	3247 W	4000 MHz	211 W
50 MHz	2518 W	5000 MHz	182 W
100 MHz	1768 W	6000 MHz	162 W
144 MHz	1466 W	7000 MHz	138 W
200 MHz	1215 W	8000 MHz	125 W
400 MHz	836 W		

For step by step assembly instructions of connectors, please visit our website www.messi.it

Given a power fed to the X value (any value expressed in Watts), the actual power output of the cable is shown in the table in the form of remaining percentage. (for example, if we use a cable such as M&P-ULTRAFLEX 10, entering 1000 Watts over a length of 35m, at a frequency of 144 MHz, there remains 68.2 % of 1000). For maximum applicable power, see the Power Handling of the cable concerned. From these values, have already been deducted the SRL values, typical of each one of our models, for the respective frequencies.

REMEMBER: Make sure to match the line accurately!

				N	1&P	-UL1	ΓRA	FLE	X 10	(H 201	D - NEO	FLEX 10)			
	leng	th>	16,4	32,8	49,2	65,6	82	114,8	164	246	328	426,5	524,9	656,2	984,2	feet
	Wave length	MHz	5	10	15	20	25	35	50	75	100	130	160	200	300	m
	85.71 m	3,5	99.2	98.5	97.7	97	96.2	94.8	92.7	89.2	85.9	82	78.4	73.8	63.4	
	42.85 m	7	98.9	97.8	96.7	95.6	94.5	92.4	89.4	84.5	80	74.8	69.9	63.9	51.1	C
	21.42 m	14	98.1	96.4	94.6	92.9	91.2	87.9	83.2	75.9	69.3	62.1	55.6	48.1	33.3	sef
S S	10.71 m	28	97.5	95.2	92.8	90.6	88.4	84.1	78.1	69.1	61.1	52.7	45.4	37.3	22.8	Useful signal
Frequenz	6 m	50	96.8	93.8	90.9	88	85.3	80	72.7	62.1	52.9	43.7	36.1	28	14.8	
đ	2.08 m	144	94.6	89.6	84.8	80.3	76.1	68.2	57.9	44	33.5	24.1	17.4	11.2	3.7	lal
L.	69 cm	430	90.4	81.8	74.1	67	60.7	49.7	36.8	22.3	13.5	7.4	4			out
_	23.1 cm	1296	82,2	67,9	56,1	46,4	38,3	26	14,5	5,3						pu
les	12.5 cm	2400	74.5	56.3	42.9	31.9	23.9	13.2	4.9							t (r
u u	10 cm	3000	71.4	51.7	37.4	26.9	19.2	9.5								esi
ne	7.5 cm	4000	66.5	44.9	30.1	20	13.1	5.1								dua
Frequencies	6 cm	5000	61.9	39	24.2	14.7	8.6									output (residual power
Ľ	5 cm	6000	57.9	34.2	19.6	10.8										V V
	3.75 cm	8000	51	26.2	12.6	5.1										er
	3 cm	10.000	43.2	18.2	5.9											%
	2.5 cm	12.000	38.4	13.6												

M&P-ULTRAFLEX 10 (Power Handling/Temperature)

				Temperature C° / F°									
	Wave length	MHz	-10 / 14	-5 / 23	0 / 32	10 / 50	20 / 68	30 / 86	40 / 104	50 / 122	60 / 140	70 / 158	
	166.66 m	1,8	12000	12000	12000	11980	11178	10710	9927	8468	7008	5559	
	85.71 m	3,5	11700	11450	11211	10500	9667	8678	7721	6586	5451	4324	
	42.85 m	7	11089	10717	10402	9743	8969	8052	7164	6111	5058	4012	
	30 m	10	8274	7996	7761	7270	6692	6008	5345	4559	3774	2993	
	21.42 m	14	6765	6538	6346	5944	5472	4912	4370	3728	3085	2447	
a	14.28 m	21	5661	5471	5310	4974	4579	4111	3657	3120	2582	2048	
requenze	10.71 m	28	5027	4858	4715	4416	4065	3650	3247	2770	2292	1818	
e	6 m	50	3897	3766	3656	3424	3152	2830	2518	2148	1777	1410	
d	3 m	100	2737	2645	2567	2405	2214	1987	1768	1508	1248	990	
e e	2.08 m	144	2269	2193	2129	1994	1835	1648	1466	1250	1035	821	
Н /	1.5 m	200	1881	1817	1764	1652	1521	1365	1215	1036	858	680	ξ
	75 cm	400	1294	1251	1214	1137	1047	940	836	713	590	468	WATT
requencies	69 cm	430	1244	1202	1166	1093	1006	903	803	685	567	450	
	37.5 cm	800	884	854	829	777	715	642	571	487	403	320	
Pe	30 cm	1000	779	753	731	684	630	566	503	429	355	282	
b	23.1 cm	1296	690	666	647	606	558	501	445	380	314	249	
E Le	12.5 cm	2400	453	438	425	398	366	329	293	250	207	164	
	10 cm	3000	394	381	370	346	319	286	255	217	180	143	
	7.5 cm	4000	327	316	307	287	264	237	211	180	149	118	
	6 cm	5000	282	272	264	248	228	205	182	155	128	102	
	5 cm	6000	251	243	236	221	203	182	162	138	115	91	
	4.2 cm	7000	214	207	201	188	173	156	138	118	98	78	
	3.75 cm	8000	193	186	181	169	156	140	125	106	88	70	

Connector "N" type : C.N.BROAD50-M

Insert in the cable components A, B, C and immediately having opened the braid after, make a circular cut on as shown in the pictuthe black PVC jacket at the indicated length shown in the caliber (in mm). Subsequently remove it.

the black PVC jacket.

Insert component D after re. Push component D between the foil and the braid until it stops against

Flatten the wires as shown in the picture and cut the excess.

Cut and remove the tape and dieletric for a length as shown in the picture (6mm).

Insert one of the two teflon discs and subsequently the central pin. Solder the pin to the inner conductor, inserting tin in the provided hole. Avoid heating the pin for a too long time in order not to transfer excessive heat to the highly conductive copper underneath. Excessive heat deforms the dielectric which is made of foam PE and not in teflon!.

Insert the second teflon disc as shown in the picture.

connector body. Inside, the rubber component C (pic. 1) will expand, granting optimal sealing against moisture and a perfect contact to ground.

Insert the connector and fasten accurately until the o-ring present in component A, will be pressed against the

Insert in the cable components A, B, C and immediately after, make a circular cut on the black PVC jacket at the indicated length shown in the caliber (in mm). Subsequently remove it.

Insert the connector and solder it with tin to the inner conductor (see picture above). Avoid heating the pin for a too long time in order not to transfer excessive heat to the highly conductive copper underneath. Excessive heat deforms the dielectric which is made of foam PE and not in teflon!.

Insert component D after having opened the braid as shown in the picture. Push component D between the foil and the braid until it stops against the black PVC jacket.

(1)

Fasten together the connector and component A, until it will be pressed against the connector body. Inside, the rubber component C (pic. 1) will expand, granting optimal sealing against moisture and a perfect contact to ground.

Flatten the wires as shown in the picture and cut the excess.

Cut and remove the tape and dieletric for a lenght as shown in the picture.

1,4 Kg/100m lighter than RG58

M&P $R(\mathbf{I})$

High resistance screen made of a sturdy Aluminium-Magnesium alloy BRAID (ALMg). The braiding process is operated by means of 24 spools braiding machines. (50% more intersections if compared to traditional 16 spools machines.) This braid is HIGHLY EFFECTIVE AGAINST LOW FREQUENCY IMPULSIVE NOISES.

SCREENING PERCENTAGE: 82% 96 wires

Triple layer screening tape, (foil), highly effective against high frequency interferences. SCREENING PERCENTAGE 100% --POL-AL

1000	Waterproo
	Sturdy
pressure physical injection f	oamed

Trampling-resistant, UV shielded PE jacket to be used in particular

for underground and outdoor in-

PE Ø 5 ± 0,15 mm

stallations.

(0,197 inches)

High polyethylene TRIPLE LAYER DIELECTRIC FPE Ø 3 ± 0,05 mm

0,3-600 MHz

600-1200 MHz

am Rad

Inner conductor : 99,99% pure electrolitic annealed bare copper. (annealed = thermal softening process)

Cu Ø 1,13 mm (0,044 inches)

ELECTRICAL DATA ± 3

nm

+ 70° C

±2

ı/Km

ı/Km

ATT

Impedanc	e @200MHz :	50 Ohm
Minimum	bending radius:	
Multiple b	ends/single ben	d 50/25 m
Temperat	ure:	-45° to ·
Capacitar	nce:	76 pF/m
Velocity ra	atio:	85 %
Screening	g efficiency:	
100-2000	MHz	>105 dE
Class		A++
Inner con	ductor resistance	e: 17 Ohm
Outer con	ductor resistanc	e: 34 Ohm
Tension te	est (spark test):	8 kV
Weight (1	00m):	2,35 Kg
Maximum	peak power:	2000 W

For step by step assembly instructions of connectors, please visit our website www.messi.it

1200-2000 MHz >25 dB

>30 dB

>28 dB

SRL

FREQUENCY 1,8 MHz 1172 W 837 W 3,5 MHz 625 W 7,0 MHz 10 MHz 543 W 14 MHz 471 W 21 MHz 394 W 28 MHz 346 W 50 MHz 268 W 100 MHz 198 W 144 MHz 170 W 200 MHz 146 W 400 MHz 102 W

ATTENUATION at 20°C

AMARIANE E

FREQUENCY dB/100m dB/100ft 1.8 MHz 1.6 0.49 3,5 MHz 2,24 0.68 7.0 MHz 3.0 0.91 10 MHz 3.45 1.05 14 MHz 3.98 1,21 21 MHz 4.76 1,45 28 MHz 5.42 1,65 7.0 2,13 50 MHz 9,45 100 MHz 2.88 11.0 144 MHz 3,35 200 MHz 12.85 3 92 400 MHz 18,38 5.60 430 MHz 19.0 5,79 800 MHz 26.57 8,10 29.88 1000 MHz 9,11 1296 MHz 34,2 10,42 47,58 2400 MHz 14,50 3000 MHz 53,5 16,31 4000 MHz 61,0 18,59 5000 MHz 68.6 20,91 6000 MHz 75,6 23,04

3,6 dB/100m better

@50 MHz than RG58

Will W

18.0 18.1

Given a power fed to the X value (any value expressed in Watts), the actual power output of the cable is shown in the table in the form of remaining percentage. (for example, if we use a cable such as M&P-AIRBORNE 5, entering 1000 Watts over a length of 35m, at a frequency of 144 MHz, there remains 41.1 % of 1000). For maximum applicable power, see the Power Handling of the cable concerned. From these values, have already been deducted the SRL values, typical of each one of our models, for the respective frequencies.

REMEMBER: Make sure to match the line accurately!

						N	I&P	AIR	BOI	RNE	5					
	lengt	gth> 16,4		32,8	49,2	65,6	82	114,8	164	246	328	426,5	524,9	656,2	984,2	feet
	Wave length	MHz	5	10	15	20	25	35	50	75	100	130	160	200	300	m
	85.71 m	3,5	98.2	96.6	95	93.4	91.8	88.8	84.4	77.6	71.3	64.5	58.3	51	36.4	
0	42.85 m	7	97.3	94.9	92.4	90.1	87.8	83.3	77.1	67.7	59.5	50.9	43.6	35.4	21	Use
Frequenze	21.42 m	14	95.6	91.5	87.5	83.7	80.1	73.3	64.2	51.5	41.3	31.7	24.3	17	7	Useful signal output
nei	10.71 m	28	93.9	88.3	83	78	73.4	64.8	53.9	39.5	28.9	19.9	13.7	8.3		sign
eq	6 m	50	92.2	85.1	78.5	72.4	66.8	56.9	44.6	30.1	19.9	12.3	7.7	3.9		lal o
	2.08 m	144	88	77.5	68.3	60.2	53	41.1	28.1	14.9	7.8	3.6				outp
s.	69 cm	430	80.2	64.4	51.7	41.5	33.2	21.5	11.1	3.6						ut
cie	23.1 cm	1296	66,8	44,9	30,1	20,1	13,3	5,7								resi
en	12.5 cm	2400	56.2	31.9	17.7	9.6	5									dua
Frequencies	10 cm	3000	52	27.2	13.8	6.5										(residual power
-re	7.5 cm	4000	46.4	21.4	9											We
	6 cm	5000	39.1	14.3	3											r %)
	5 cm	6000	26													

M&P-AIRBORNE 5 (Power Handling/Temperature)

			Temperature C° / F°										
	Wave length	MHz	-10 / 14	-5 / 23	0 / 32	10 / 50	20 / 68	30 / 86	40 / 104	50 / 122	60 / 140	70 / 158	
	166.66 m	1,8	1600	1600	1600	1594	1467	1317	1172	1000	827	656	
	85.71 m	3,5	1296	1252	1215	1138	1048	941	837	714	591	469	
	42.85 m	7	968	935	908	850	783	703	625	533	441	350	
	30 m	10	841	813	789	739	680	611	543	464	384	304	
D	21.42 m	14	729	705	684	641	590	530	471	402	333	264	
duenze	14.28 m	21	610	589	572	536	493	443	394	336	278	221	
e	10.71 m	28	536	518	502	470	433	389	346	295	244	194	
dr	6 m	50	415	401	389	364	335	301	268	228	189	150	
P	3 m	100	307	297	288	270	248	223	198	169	140	111	
μ	2.08 m	144	264	255	248	232	213	192	170	145	120	95	5
	1.5 m	200	226	218	212	198	183	164	146	124	103	82	WAT
requencies	75 cm	400	158	153	148	139	128	115	102	87	72	57	
D u	69 cm	430	153	148	143	134	123	111	99	84	70	55	
P	37.5 cm	800	109	106	102	96	88	79	71	60	50	40	
b	30 cm	1000	97	94	91	85	79	71	63	54	44	35	
	23.1 cm	1296	85	82	80	75	69	62	55	47	39	31	
ш	12.5 cm	2400	61	59	57	54	49	44	39	34	28	22	
	10 cm	3000	54	52	51	48	44	39	35	30	25	20	
	7.5 cm	4000	48	46	45	42	38	35	31	26	22	17	
	6 cm	5000	42	41	40	37	34	31	27	23	19	15	
	5 cm	6000	38	37	36	34	31	28	25	21	18	14	

Connector "N" type : C.N.AC5M-S

ly remove it.

black PVC outer jacket at the nents A, B, C and immedi- cut, as shown in picture 2, having opened the braid indicated length shown in the ately after, make a circular rotate the cable 180 de- as shown in the picture. caliber (in mm). Subsequent- cut on the red PE jacket at grees and make a second Push component D bethe indicated length shown cut in the same way, in tween the foil and the in the caliber (in mm). Sub- order to facilitate the intro- braid until it stops against sequently remove it.

duction of component D the red PE jacket.

Insert component D after

Flatten the wires as shown in the picture and cut the excess.

Cut and remove the tape and diele-Insert one of the two teflon discs and Insert the second teflon disc as tric for a lenght as shown in the pic- subsequently the central pin. Solder shown in the picture. ture (in mm).

the pin to the inner conductor, inserting tin in the provided hole. Avoid heating the pin for a too long time in order not to damage with excessive heat the cable dielectric. (which is not made in teflon!)

Insert the connector and fasten accurately until the o-ring present in component A, will be pressed against the connector body. Inside, the rubber component C (pic. 1) will expand, granting optimal sealing against moisture and a perfect contact to ground.

Connector "UHF" type : C.UHF.AC5M-S

Insert in the cable components A, B, C and immediately after, make a circular cut on the jacket at the indicated length shown in the caliber. (in mm). Subsequently remove it.

cut, as shown in picture 2, having opened the braid rotate the cable 180 de- as shown in the picture. grees and make a second cut in the same way, in order to facilitate the introduction of component D (pic.3 and 4)

After having made the first Insert component D after

Push between the foil and the braid until it stops against the jacket

component D Flatten the wires as shown in the picture and cut the excess.

Cut and remove the tape and dieletric for a lenght as shown in the picture.

Insert the connector and solder it with tin to the inner conductor (see picture above). Avoid heating for a too long time in order not to damage with excessive heat the cable dielectric (which is not made in teflon!)

B

Fasten together the connector and component A, until it will be pressed against the connector body. Inside, the rubber component C (pic. 1) will expand, granting optimal sealing against moisture and a perfect contact to ground.

M&P HyperFlex 5

High resistance copper screen (Cu) made by means of 24 spools braiding machines. (50% more crossovers if compared to traditional 16 spools machines.) This braid is HIGHLY EFFECTIVE AGAINST **IMPULSIVE NOISES. SCREENING PERCENTAGE: 88% 120 wires**

High pressure physical injection foamed polyethylene. TRIPLE LAYER DIELECTRIC FPE Ø 3,7 ± 0,05 mm

Inner conductor made of 19X0,29 stranded

geometric and concentric copper wires. Purity 99,99% annealed.

(annealed = thermal softening process) Cu 19x0,29 mm - Ø 1,4 mm (19x0,011 inches) (0,055 inches)

ELECTRICAL DATA

Impedance @200MHZ :	50 01
Minimum bending radius:	
Multiple bends/single bend	50/25
Temperature:	-45° t
Capacitance:	74 pF
Velocity ratio:	87 %
Screening efficiency:	
100-2000 MHz	>105
Class	A++
Inner conductor resistance:	14 Oł
Outer conductor resistance:	11 Oł
Tension test (spark test):	4 kV
Weight (100m):	4,2 K
Maximum peak power:	2900

50 Ohm ± 3 mm to + 70° C /m ± 2 dB hm/Km nm/Km WATT

The copper foil has an applied PEcoating, placed in order to prevent foil cracking due to short radius bends. **SCREENING PERCENTAGE 100%** CU-POL

SRL

0,3-600 MHz >28 dB

600-1200 MHz >25 dB

1200-2000 MHz >22 dB

200 MHz

165 W

m Radi

Cabl

0

049 <u>8 12²³</u>

UV resistant black PVC jacket. PVC Ø 5,4 ± 0,15 mm (0,212 inches)

ATTENUATION at 20°C									
FREQUENCY	dB/100m	dB/100ft							
1,8 MHz	1,48	0,45							
3,5 MHz	1,91	0,58							
7,0 MHz	2,33	0,71							
10 MHz	2,63	0,80							
14 MHz	3,04	0,93							
21 MHz	3,64	1,11							
28 MHz	4,16	1,27							
50 MHz	5,58	1,70							
100 MHz	8,02	2,44							
144 MHz	9,66	2,94							
200 MHz	11,44	3,49							
400 MHz	16,37	4,99							
430 MHz	17,0	5,18							
800 MHz	23,48	7,16							
1000 MHz	26,46	8,07							
1296 MHz	30,5	9,30							
2400 MHz	42,58	12,98							
3000 MHz	48,1	14,66							
4000 MHz	56,95	17,36							
5000 MHz	65,29	19,90							
6000 MHz	72.92	22.23							

26 W

POW		DLING (at 40C°/104 F°)	
		FREQUENCY	MAXP
1,8 MHz	1274 W	400 MHz	115 W
3,5 MHz	987 W	430 MHz	111 W
7,0 MHz	809 W	800 MHz	80 W
10 MHz	717 W	1000 MHz	71 W
14 MHz	620 W	1296 MHz	62 W
21 MHz	518 W	2400 MHz	44 W
28 MHz	453 W	3000 MHz	39 W
50 MHz	338 W	4000 MHz	33 W
100 MHz	235 W	5000 MHz	29 W
144 MHz	195 W	6000 MHz	26 W

For step by step assembly instructions of connectors, please visit our website www.messi.it

Given a power fed to the X value (any value expressed in Watts), the actual power output of the cable is shown in the table in the form of remaining percentage. (for example, if we use a cable such as M&P-HYPERFLEX 5, entering 1000 Watts over a length of 35m, at a frequency of 144 MHz, there remains 45,8 % of 1000). For maximum applicable power, see the Power Handling of the cable concerned. From these values, have already been deducted the SRL values, typical of each one of our models, for the respective frequencies.

						M	λP-ŀ	IYP	ERF	LEX	5					
	leng	th>	16,4	32,8	49,2	65,6	82	114,8	164	246	328	426,5	524,9	656,2	984,2	feet
	Wave length	MHz	5	10	15	20	25	35	50	75	100	130	160	200	300	m
	85.71 m	3,5	97,7	95,6	93,5	91,5	89,5	85,6	80,2	71,8	64,3	56,4	49,4	41,4	26,6	٥
	42.85 m	7	97,3	94,7	92,2	89,7	87,3	82,8	76,4	66,8	58,4	49,7	42,3	34,1	19,9	iefu
Ize	21.42 m	14	96,5	93,1	89,9	86,8	83,8	78,2	70,4	59,1	49,6	40,2	32,5	24,6	12,1	is Ir
Frequenze	10.71 m	28	95,2	90,8	86,5	82,5	78,6	71,4	61,8	48,7	38,3	28,7	21,5	14,6	5,5	Useful signal output (residual
ba	6 m	50	93,7	87,8	82,4	77,2	72,4	63,7	52,5	38,1	27,6	18,7	12,7	7,6		ole
	2.08 m	144	89,4	80,0	71,5	64,0	57,2	45,8	32,8	18,8	10,7	5,4				utp
s.	69 cm	430	82,1	67,4	55,4	45,6	37,4	25,3	14,0	5,2						ut (
cie	23.1 cm	1296	69,8	48,9	34,2	23,9	16,6	7,9								res
len	12.5 cm	2400	59,7	35,9	21,4	12,5	7,0									sidu
Frequencies	10 cm	3000	55,9	31,5	17,4	9,3	4,7									ial J
Fre	7.5 cm	4000	48,7	23,8	10,8	4,1										VOC
	6 cm	5000	40,8	15,9	4,2											power %)
	5 cm	6000	33,2	8,7												%)

REMEMBER: Make sure to match the line accurately!

M&P-HYPERFLEX 5 (Power Handling/Temperature)

				Temperature C° / F°										
	Wave length	MHz	-10 / 14	-5 / 23	0 / 32	10 / 50	20 / 68	30 / 86	40 / 104	50 / 122	60 / 140	70 / 158		
	166.66 m	1,8	1850	1850	1850	1732	1595	1432	1274	1086	899	713		
	85.71 m	3,5	1528	1476	1433	1342	1236	1109	987	842	697	553		
	42.85 m	7	1252	1210	1175	1100	1013	909	809	690	571	453		
	30 m	10	1109	1072	1041	975	897	806	717	611	506	401		
Ð	21.42 m	14	960	928	900	843	776	697	620	529	438	347		
requenze	14.28 m	21	802	775	752	704	648	582	518	442	366	290		
e	10.71 m	28	701	678	658	616	567	509	453	387	320	254		
d	6 m	50	523	505	491	459	423	380	338	288	238	189	<	
S	3 m	100	364	352	341	320	294	264	235	200	166	132	WATT	
L	2.08 m	144	302	292	283	265	244	219	195	166	138	109	F	
-	1.5 m	200	255	247	239	224	206	185	165	141	116	92		
Frequencies	75 cm	400	178	172	167	157	144	129	115	98	81	64		
ŭ	69 cm	430	172	166	161	151	139	125	111	95	78	62		
ne	37.5 cm	800	124	120	117	109	101	90	80	68	57	45		
b	30 cm	1000	110	107	103	97	89	80	71	61	50	40		
Le la	23.1 cm	1296	96	92	90	84	77	69	62	53	44	35		
-	12.5 cm	2400	69	66	64	60	55	50	44	38	31	25		
	10 cm	3000	61	59	57	53	49	44	39	33	28	22		
	7.5 cm	4000	51	50	48	45	41	37	33	28	23	19		
	6 cm	5000	45	43	42	39	36	32	29	25	20	16		
	5 cm	6000	40	39	38	35	32	29	26	22	18	14		

Connector assembly Connector "N" type : C.N.HYF5M-S

Make a circular cut on the black PVC outer jacket at the indicated length shown in the caliber (in mm). Subsequently remove it.

After having made the first cut, as shown in picture 2, rotate the cable 180 degrees and make a second cut in the same way, in order to facilitate the introduction of component D (pic.4 and 5)

Insert component D after having opened the braid as shown in the picture. Push component D between the foil and the braid until it stops against the red PE jacket.

Flatten the wires as shown in the picture and cut the excess

tric for a lenght as shown in the pic- subsequently the central pin. Solder shown in the picture. ture (in mm).

Cut and remove the tape and diele- Insert one of the two teflon discs and Insert the second teflon disc as the pin to the inner conductor, inserting tin in the provided hole. Avoid heating the pin for a too long time in order not to damage with excessive heat the cable dielectric. (which is not made in teflon!)

Insert the connector and fasten accurately until the o-ring present in component A, will be pressed against the connector body. Inside, the rubber component C (pic. 1) will expand, granting optimal sealing against moisture and a perfect contact to ground.

Connector "UHF" type : C.UHF.AC5M-S

Insert in the cable components A, B. C and immediately after, make a circular cut on the jacket at the indicated length shown in the caliber. (in mm). Subsequently remove it.

Insert component D after having opened the braid as shown in the picture.

Push component D between the foil and the braid until it stops against the jacket.

Flatten the wires as shown in the picture and cut the excess.

Cut and remove the tape and dieletric for a lenght as shown in the picture.

Insert the connector and solder it with tin to the inner conductor (see picture above). Avoid heating for a too long time in order not to damage with excessive heat the cable dielectric (which is not made in teflon!)

7

Fasten together the connector and component A, until it will be pressed against the connector body. Inside, the rubber component C (pic. 1) will expand, granting optimal sealing against moisture and a perfect contact to ground.

45,3% lighter than average 10,3 mm full copper cables

M&P

High resistance copper clad aluminium screen (CCA) made by means of 24 spools braiding machines.(50% more crossovers if compared to traditional 16 spools machines.) This braid is **HIGHLY EFFECTIVE AGAINST LOW** FREQUENCY IMPULSIVE NOISES. **SCREENING PERCENTAGE: 78% 168 wires**

High pressure physical injection foamed polyethylene TRIPLE LAYER DIELECTRIC FPE Ø 7,3 ± 0,05 mm

19dB @ 2400 Mhz by far the most performant of its class (10,3 mm cables)

ATTENUATION at 20°C

1,8 MHz

3,5 MHz

7.0 MHz

10 MHz

14 MHz

12.000 MHz

REQUENCY dB/100m dB/100ft

0,65

0,85

1,08

1,20

1,39

0,20

0,26

0.33

0.37

0.42

	HITION
C126	Waterproof
	Sturdy
The copper foil has an applied F	

ting, placed in order to prevent foil cracking due to short radius bends. **SCREENING PERCENTAGE 100%** CU-POL

Trampling-resistant, UV shielded PE

jacket to be used in particular for un-

derground and harsh environments

outdoor installations.

(0,405 inches)

PE Ø 10,3 ± 0,15 mm

m Rad

Inner conductor: annealed copper clad aluminium (annealed = thermal softening process)

CCA Ø 2.78 mm (0,109 inches)

ELECTRICAL DATA

Impedance @200MHz :	50 Ohm ± 3
Minimum bending radius:	
Multiple bends/single bend	103/65 mm
Temperature:	-45° to + 70° (
Capacitance:	74 pF/m ± 2
Velocity ratio:	87 %
Screening efficiency:	
100-2000 MHz	>105 dB
Class	A++
Inner conductor resistance:	4,4 Ohm/Km
Outer conductor resistance:	12 Ohm/Km
Tension test (spark test):	8 kV
Weight (100m):	7 Kg
Maximum peak power:	14500 WATT

For step by step assembly instructions of connectors, please visit our website www.messi.it

SRL 0,3-600 MHz

>30 dB 600-1200 MHz >25 dB 1200-2000 MHz >20 dB

21 MHz	1,75	0,53
28 MHz	1,93	0,59
50 MHz	2,45	0,75
100 MHz	3,52	1,07
144 MHz	4,20	1,28
200 MHz	5,0	1,52
400 MHz	7,2	2,19
430 MHz	7,6	2,32
800 MHz	10,4	3,17
1000 MHz	11,8	3,6
1296 MHz	13,6	4,15
2400 MHz	19,2	5,85
3000 MHz	21,6	6,58
4000 MHz	25,6	7,80
5000 MHz	29,2	8,9
6000 MHz	32,8	10,0
7000 MHz	35,6	10,85
8000 MHz	38,6	11,77
10.000 MHz	44.6	13.59

50,2

15,30

POWER HANDLING (at 40C°/104 F°)

FREQUENCY	MAXP	FREQUENCY	MAXP
1,8 MHz	10831 W	430 MHz	944 W
3,5 MHz	8471 W	800 MHz	692 W
7,0 MHz	6667 W	1000 MHz	610 W
10 MHz	6000 W	1296 MHz	529 W
14 MHz	5180 W	2400 MHz	375 W
21 MHz	4114 W	3000 MHz	333 W
28 MHz	3731 W	4000 MHz	281 W
50 MHz	2939 W	5000 MHz	247 W
100 MHz	2045 W	6000 MHz	220 W
144 MHz	1710 W	7000 MHz	202 W
200 MHz	1440 W	8000 MHz	187 W
400 MHz	992 W	10.000 MHz	161 W

Given a power fed to the X value (any value expressed in Watts), the actual power output of the cable is shown in the table in the form of remaining percentage. (for example, if we use a cable such as M&P-AIRBORNE 10, entering 1000 Watts over a length of 35m, at a frequency of 144 MHz, there remains 71.2% of 1000). For maximum applicable power, see the Power Handling of the cable concerned. From these values, have already been deducted the SRL values, typical of each one of our models, for the respective frequencies.

coaxial cables www.messi.it

REMEMBER: Make sure to match the line accurately!

						M	&P-A	AIRE	BOR	NE 1	0					
	length>		16,4	32,8	49,2	65,6	82	114,8	164	246	328	426,5	524,9	656,2	984,2	feet
	Wave length	MHz	5	10	15	20	25	35	50	75	100	130	160	200	300	m
	85.71 m	3,5	98.9	98	97	96.1	95.2	93.3	90.6	86.4	82.2	77.6	73	67.6	55.5	
	42.85 m	7	98.7	97.5	96.3	95.1	93.9	91.6	88.3	82.9	77.9	72.4	67.1	60.8	47.4	C
	21.42 m	14	98.4	96.8	95.3	93.7	92.4	89.3	85.1	78.6	72.6	65.9	59.9	52.7	38.2	Useful signal
Se	10.71 m	28	97.8	95.6	93.5	91.4	89.4	85.5	80	71.7	64	56.2	49.1	41	26.3	l s
Frequenze	6 m	50	97.2	94.5	91.8	89.3	86.8	82	75.4	65.4	56.8	48	40.5	32.3	18.4	igi
dr	2 m	144	95.2	90.7	86.4	82.3	78.4	71.2	61.6	48.3	37.9	28.3	21.2	14.4	5.4	nal output (residual power
re	69 cm	430	91.5	83.8	76.7	70.3	64.4	54	41.5	26.8	17.2	10.1	5.9			
_	23.1 cm	1296	84,9	72,5	61,9	52,8	45,1	32,8	20,3	8,9	3,7					
es	12.5 cm	2400	78	61.8	48.9	38.6	30.4	18.7	8.6							
nci	10 cm	3000	75.2	57.4	43.8	33.2	25.2	14.2	5.6							esi
Frequencies	7.5 cm	4000	71.2	51.4	37	26.5	18.9	9.2								dua
eq	6 cm	5000	67.2	45.9	31.1	20.9	13.8	5.6								d le
1	5 cm	6000	63.4	40.9	26.2	16.4	9.9									٥W
	3.75 cm	8000	57	33	19	10										er
	3 cm	10.000	50	20.6	12											%)
	2.5 cm	12.000	45	18												

M&P-AIRBORNE 10 (Power Handling/Temperature)

						Tem	perature C	° / F°					
	Wave length	MHz	-10 / 14	-5 / 23	0 / 32	10 / 50	20 / 68	30 / 86	40 / 104	50 / 122	60 / 140	70 / 158	
	166.66 m	1,8	13300	13300	13300	13300	12900	12174	10831	9239	7647	6065	
	85.71 m	3,5	13112	12672	12299	11520	10605	9521	8471	7225	5980	4744	
	42.85 m	7	10320	9973	9680	9067	8347	7493	6667	5687	4707	3733	
	30 m	10	9288	8976	8712	8160	7512	6744	6000	5118	4236	3360	
	21.42 m	14	8018	7749	7521	7045	6485	5822	5180	4418	3657	2901	
	14.28 m	21	6369	6155	5974	5595	5151	4624	4114	3509	2905	2304	
D	10.71 m	28	5775	5581	5417	5074	4671	4193	3731	3182	2634	2089	
Frequenze	6 m	50	4549	4396	4267	3997	3679	3303	2939	2507	2075	1646	
e	3 m	100	3166	3060	2970	2782	2561	2299	2045	1745	1444	1145	
Ъ	2.08 m	144	2647	2558	2483	2326	2141	1922	1710	1459	1207	958	
Le	1.5 m	200	2229	2154	2091	1958	1803	1619	1440	1228	1017	806	
H	75 cm	400	1535	1484	1440	1349	1242	1115	992	846	700	555	WATT
	69 cm	430	1461	1412	1370	1283	1181	1061	944	805	666	528	
i.	37.5 cm	800	1072	1036	1005	942	867	778	692	591	489	388	
DC	30 cm	1000	945	913	886	830	764	686	610	520	431	342	
P	23.1 cm	1296	820	792	769	720	663	595	529	452	374	296	
Frequencies	12.5 cm	2400	581	561	545	510	470	422	375	320	265	210	
e la	10 cm	3000	516	499	484	453	417	375	333	284	235	187	
	7.5 cm	4000	435	421	408	383	352	316	281	240	199	158	
	6 cm	5000	382	369	358	335	309	277	247	210	174	138	
	5 cm	6000	340	328	319	299	275	247	220	187	155	123	
	4.2 cm	7000	313	303	294	275	253	227	202	173	143	113	
	3.75 cm	8000	289	279	271	254	234	210	187	159	132	104	
	3.3 cm	9000	269	260	252	236	217	195	173	148	122	97	
	3 cm	10.000	250	242	234	220	202	181	161	138	114	90	

Connector "N" type : C.N.BROAD50-M

ts A, B, C and immediately having opened the braid after, make a circular cut on the black PVC jacket at the indicated length shown in the caliber (in mm). Subsequently remove it.

the black PVC jacket.

8

Flatten the wires as shown in the picture and cut the excess.

and dieletric for a length as shown in the picture (6mm).

Cut and remove the tape Insert one of the two teflon discs and subsequently the central pin. Solder the pin to the inner conductor, inserting tin in the provided hole. Avoid heating the pin for a too long time in order not to transfer excessive heat to the highly conductive copper underneath. Excessive heat deforms the dielectric which is made of foam PE and not in teflon!.

Insert the connector and fasten accurately until the o-ring present in component A, will be pressed against the connector body. Inside, the rubber component C (pic. 1) will expand, granting optimal sealing against moisture and a perfect contact to ground.

Insert the second teflon disc as shown in the picture.

Connector "UHF" type : C.UHF.BROAD50-M

Insert in the cable components A, B, C and immediately after, make a circular cut on the black PVC jacket at the indicated length shown in the caliber (in mm). Subsequently remove it.

Insert the connector and solder it with tin to the inner conductor (see picture above). Avoid heating the pin for a too long time in order not to transfer excessive heat to the highly conductive copper underneath. Excessive heat deforms the dielectric which is made of foam PE and not in teflon!.

Insert component D after having opened the braid as shown in the picture. Push component D between the foil and the braid until it stops against the black PVC jacket.

6

Fasten together the connector and component A, until it will be pressed against the connector body. Inside, the rubber component C (pic. 1) will expand, granting optimal sealing against moisture and a perfect contact to ground.

Flatten the wires as shown in the picture and cut the excess.

Cut and remove the tape and dieletric for a lenght as shown in the picture.

M&P HyperFlex 10

High resistance copper clad aluminium screen (CCA) made by means of 24 spools braiding machines.(50% more crossovers if compared to traditional 16 spools machines.) This braid is **HIGHLY EFFECTIVE AGAINST LOW** FREQUENCY IMPULSIVE NOISES. SCREENING PERCENTAGE: 78% 168 wires

High pressure physical injection foamed polyethylene, TRIPLE LAYER DIELECTRIC. FPE Ø 7,3 ± 0,05 mm

EXTRAFLEXIBLE UV resistant PVC jacket. PVC Ø 10,3 ± 0,15 mm

(0,405 inches)

- WARTEN

dB/100ft

Screening foil, highly effective against igh frequency interferences. The cop- er foil has an applied PE-coating, pla- ed in order to prevent foil cracking due o short radius bends. SCREENING PERCENTAGE 100%	

tc S CU-POL

Inner conductor made of 19x0,59 stranded, geometric and concentric annealed copper wires. Purity 99,99%. (annealed = thermal softening process) (19x0,023 inches)

ELECTRICAL DA	
	A

50 Ohm ± 3

0° C 5° C 2

<m (m

	50 Onin ±
Minimum bending radius:	
Multiple bends(15)/single bend	80/40 mm
Temperature range:	
installation	-40° to +6
operative	-55° to +8
Capacitance:	78 pF/m ±
Velocity ratio:	87 %
Screening efficiency:	
100-2000 MHz	>105 dB
Class	A++
Inner conductor resistance:	3,6 Ohm/ł
Outer conductor resistance:	12 Ohm/K
Tension test (spark test):	8 kV
Weight (100m):	11,1 Kg
Maximum peak power:	13 KWAT

Impedance @200MHz

For step by step assembly instructions of connectors, please visit our website www.messi.it

am Radi

Cab

LULLE O MAN IAW

Cu 19x0,59 mm - Ø 3 mm (0,118 inches)

SRL 0,3-600 MHz >30 dB 600-1200 MHz >25 dB 1200-2000 MHz >20 dB

1,8 MHz	0,7	0,21
3,5 MHz	0,9	0,27
7,0 MHz	1,16	0,35
10 MHz	1,34	0,41
14 MHz	1,55	0,47
21 MHz	1,84	0,56
28 MHz	2,07	0,63
50 MHz	2,76	0,84
100 MHz	3,95	1,20
144 MHz	4,76	1,45
200 MHz	5,67	1,73
400 MHz	8,3	2,53
430 MHz	8,6	2,62
800 MHz	11,96	3,65
1000 MHz	13,47	4,11
1296 MHz	15,49	4,72
2400 MHz	21,8	6,64
3000 MHz	24,66	7,52
4000 MHz	29,1	8,87
5000 MHz	33,1	10,09
6000 MHz	36,9	11,25
7000 MHz	40,7	12,41
8000 MHz	44,2	13,47
9000 MHz	47,5	14,48
10.000 MHz	50,7	15,45

ATTENUATION at 20°C

FREQUENCY dB/100m

4 F°)

FREQUENCY	MAXP	FREQUENCY	MAXP
1,8 MHz	9927 W	430 MHz	808 W
3,5 MHz	7721 W	800 MHz	581 W
7,0 MHz	5990 W	1000 MHz	516 W
10 MHz	5186 W	1296 MHz	449 W
14 MHz	4483 W	2400 MHz	319 W
21 MHz	3777 W	3000 MHz	282 W
28 MHz	3357 W	4000 MHz	239 W
50 MHz	2518 W	5000 MHz	210 W
100 MHz	1759 W	6000 MHz	188 W
144 MHz	1460 W	7000 MHz	171 W
200 MHz	1226 W	8000 MHz	157 W
400 MHz	837 W	10.000 MHz	137 W

Given a power fed to the X value (any value expressed in Watts), the actual power output of the cable is shown in the table in the form of remaining percentage. (for example, if we use a cable such as M&P-HYPERFLEX 10, entering 1000 Watts over a length of 35m, at a frequency of 144 MHz, there remains 68.1 % of 1000). For maximum applicable power, see the Power Handling of the cable concerned. From these values, have already been deducted the SRL values, typical of each one of our models, for the respective frequencies. REMEMBER: Make sure to match the line accurately!

						M8	P-H	YPE	RFL	EX ·	10					
	leng	th>	16,4	32,8	49,2	65,6	82	114,8	164	246	328	426,5	524,9	656,2	984,2	feet
	Wave length	MHz	5	10	15	20	25	35	50	75	100	130	160	200	300	m
	85.71 m	3,5	99,0	97,9	96,9	95,9	95,0	93,0	90,2	85,6	81,3	76,4	71,8	66,1	53,7	
	42.85 m	7	98,7	97,4	96,1	94,8	93,5	91,1	87,5	81,8	76,6	70,7	65,2	58,6	44,9	C
	21.42 m	14	98,2	96,5	94,8	93,1	91,5	88,3	83,7	76,5	70,0	62,9	56,5	49,0	34,3	sef
a Z G	10.71 m	28	97,6	95,3	93,1	90,9	88,8	84,6	78,8	69,9	62,1	53,8	46,6	38,5	23,9	u s
Frequenze	6 m	50	96,9	93,8	90,9	88,1	85,3	80,1	72,8	62,1	53,0	43,8	36,2	28,1	14,9	igr
ď	2 m	144	94,7	89,6	84,8	80,3	76,0	68,1	57,8	44,0	33,4	24,1	17,3	11,2	3,7	nal
re	69 cm	430	90,6	82,0	74,3	67,3	61,0	50,0	37,2	22,6	13,8	7,6	4,2			out
	23.1 cm	1296	83	69,4	57,9	48,4	40,4	28,1	16,2	6,3						pu
Frequencies	12.5 cm	2400	77,8	60,5	47,1	36,6	28,5	17,3	8,1							t (r
nc.	10 cm	3000	75,3	56,7	42,7	32,1	24,2	13,7	5,8							esi
ne	7.5 cm	4000	71,5	51,2	36,6	26,2	18,7	9,6	3,5							dua
eq	6 cm	5000	68,3	46,7	31,9	21,8	14,9	6,9								n p
L L	5 cm	6000	65,3	42,7	27,9	18,2	11,9	5,1								Useful signal output (residual power
	3.75 cm	8000	60,1	36,1	21,7	13,1	7,9									
	3 cm	10.000	55,8	31,1	17,4	9,7	5,4									%)
	2.5 cm	12.000	51,8	26,8	13,9	7,2	3,7									

M&P-HYPERFLEX 10 (Power Handling/Temperature)

						Ten	perature C	° / F°					
	Wave length	MHz	-10 / 14	-5 / 23	0 / 32	10 / 50	20 / 68	30 / 86	40 / 104	50 / 122	60 / 140	70 / 158	
	166.66 m	1,8	12000	12000	12000	11980	11178	10710	9927	8468	7008	5559	
	85.71 m	3,5	11720	11450	11211	10500	9667	8678	7721	6586	5451	4324	
	42.85 m	7	9273	8962	8698	8147	7500	6733	5990	5110	4229	3355	
	30 m	10	8027	7758	7530	7053	6492	5829	5186	4423	3661	2904	
	21.42 m	14	6940	6707	6509	6097	5613	5039	4483	3824	3165	2511	
	14.28 m	21	5846	5650	5484	5136	4728	4245	3777	3221	2666	2115	
S	10.71 m	28	5196	5022	4874	4565	4203	3773	3357	2863	2370	1880	
Ü.	6 m	50	3897	3766	3656	3424	3152	2830	2518	2148	1777	1410	
ň	3 m	100	2723	2632	2554	2392	2203	1977	1759	1501	1242	985	
6 6	2.08 m	144	2260	2184	2120	1985	1828	1641	1460	1245	1031	818	
Frequenze	1.5 m	200	1897	1833	1779	1667	1534	1378	1226	1045	865	686	<
_	75 cm	400	1296	1252	1216	1139	1048	941	837	714	591	469	WATT
es s	69 cm	430	1251	1209	1173	1099	1012	908	808	689	570	452	F
Ū.	37.5 cm	800	899	869	844	790	727	653	581	496	410	325	
Frequencies	30 cm	1000	799	772	749	702	646	580	516	440	364	289	
n	23.1 cm	1296	694	671	651	610	562	504	449	383	317	251	
e	12.5 cm	2400	493	477	463	434	399	358	319	272	225	179	
Ē	10 cm	3000	436	422	409	383	353	317	282	240	199	158	
	7.5 cm	4000	370	357	347	325	299	268	239	204	169	134	
	6 cm	5000	325	314	305	286	263	236	210	179	148	118	
	5 cm	6000	291	281	273	256	235	211	188	160	133	105	
	4.2 cm	7000	264	255	248	232	214	192	171	146	121	96	
	3.75 cm	8000	243	235	228	214	197	177	157	134	111	88	
	3 cm	10.000	212	205	199	186	172	154	137	117	97	77	

Connector "N" type : C.N.BROAD50-M

ts A, B, C and immediately having opened the braid after, make a circular cut on the black PVC jacket at the indicated length shown in the caliber (in mm). Subsequently remove it.

the black PVC jacket.

8

Flatten the wires as shown in the picture and cut the excess.

and dieletric for a length as shown in the picture (6mm).

Cut and remove the tape Insert one of the two teflon discs and subsequently the central pin. Solder the pin to the inner conductor, inserting tin in the provided hole. Avoid heating the pin for a too long time in order not to transfer excessive heat to the highly conductive copper underneath. Excessive heat deforms the dielectric which is made of foam PE and not in teflon!.

Insert the connector and fasten accurately until the o-ring present in component A, will be pressed against the connector body. Inside, the rubber component C (pic. 1) will expand, granting optimal sealing against moisture and a perfect contact to ground.

Insert the second teflon disc as shown in the picture.

Connector "UHF" type : C.UHF.BROAD50-M

Insert in the cable components A, B, C and immediately after, make a circular cut on the black PVC jacket at the indicated length shown in the caliber (in mm). Subsequently remove it.

Insert the connector and solder it with tin to the inner conductor (see picture above). Avoid heating the pin for a too long time in order not to transfer excessive heat to the highly conductive copper underneath. Excessive heat deforms the dielectric which is made of foam PE and not in teflon!.

Insert component D after having opened the braid as shown in the picture. Push component D between the foil and the braid until it stops against the black PVC jacket.

6

Fasten together the connector and component A, until it will be pressed against the connector body. Inside, the rubber component C (pic. 1) will expand, granting optimal sealing against moisture and a perfect contact to ground.

Flatten the wires as shown in the picture and cut the excess.

Cut and remove the tape and dieletric for a lenght as shown in the picture.

M&P UltraFlex 13^{1.500}"

EXTRAFLEXIBLE UV resistant PVC jacket. PVC Ø 12,7 ± 0,15 mm (0,500 inches)

0,15

0,18

0,23

High resistance copper clad aluminium screen (**CCA**) made by means of **24 spools** braiding machines.(50% more crossovers if compared to traditional 16 spools machines.) This braid is HIGHLY EFFECTIVE AGAINST LOW FREQUENCY IMPULSIVE NOISES. SCREENING

PERCENTAGE: 70% 168 wires

Inner conductor made of 19x0,78 stranded, geometric and concentric annealed copper wires. Purity 99,99%. (annealed = thermal softening process) (19x0,30 inches) Cu 19x0,78 mm - Ø 3.9 mm

(0,153 inches)

	JO OIIII T
Minimum bending radius:	
Multiple bends(15)/single bend	127/80 mn
Temperature range:	
installation	-40° to +60
operative	-55° to +85
Capacitance:	75 pF/m ±
Velocity ratio:	86 %
Screening efficiency:	
100-2000 MHz	>105 dB
Class	A++
Inner conductor resistance:	2 Ohm/Km
Outer conductor resistance:	12 Ohm/Ki
Tension test (spark test):	8 kV
Weight (100m):	17,4 Kg
Maximum peak power	20 KWATT

Screening foil, highly effective against high frequency interferences. The copper foil has an applied PE-coating, placed in order to prevent foil cracking due to short radius bends. SCREENING PERCENTAGE 100%

ALL DAY

CU-POL

m Rad

High pressure physical injection foamed polyethylene, TRIPLE LAYER DIELECTRIC. FPE Ø 9.9 \pm 0.05 mm

SRL 0,3-600 MHz >30 (600-1200 MHz >25 (1200-2000 MHz >20 (

	1000 Milling
	5000 MHz
	6000 MHz
	7000 MHz
dB	8000 MHz
dB	9000 MHz
dB	10.000 MHz
	12.000 MHz

10 MHz	0,89	0,27
14 MHz	1,05	0,32
21 MHz	1,25	0,38
28 MHz	1,49	0,45
50 MHz	2,0	0,61
100 MHz	2,9	0,88
144 MHz	3,65	1,11
200 MHz	4,3	1,31
400 MHz	6,25	1,91
430 MHz	6,45	1,97
800 MHz	9,15	2,79
1000 MHz	10,3	3,14
1296 MHz	12,0	3,66
2400 MHz	17,4	5,30
3000 MHz	19,8	6,04
4000 MHz	23,6	7,19
5000 MHz	26,9	8,20
6000 MHz	30,14	9,19
7000 MHz	33,3	10,15
8000 MHz	35,9	10,94
9000 MHz	38,7	11,80
0.000 MHz	41.7	12.71

47,3

14,42

ATTENUATION at 20°C

FREQUENCY dB/100m dB/100ft

0,5

0,58

0,75

1,8 MHz

3,5 MHz

7,0 MHz

POWER HA	NDLING (a	at 40°C/104

POWER HANDLING (at 40 C/104 P)											
FREQUENZE	PMAX	FREQUENZE PMAX									
1,8 MHz	13800 W	800 MHz 1005 W									
3,5 MHz	11996 W	1000 MHz 893 W									
7,0 MHz	9353 W	1296 MHz 767 W									
10 MHz	7947 W	2400 MHz 529 W									
14 MHz	6790 W	3000 MHz 465 W									
21 MHz	5732 W	4000 MHz 390 W									
28 MHz	4862 W	5000 MHz 342 W									
50 MHz	3738 W	6000 MHz 305 W									
100 MHz	2776 W	7000 MHz 276 W									
144 MHz	2363 W	8000 MHz 256 W									
200 MHz	2140 W	9000 MHz 238 W									
400 MHz	1472 W	10.000 MHz 221 W									
430 MHz	1426 W	12.000 MHz 195 W									

please visit our website www.messi.it

Due to the dimensional parameters of this cable, the frequency of 2500 MHz +/- 15 Mhz is not usable.

)° C 5° C 2

Hesi & Paoloni coaxial cables www.messi.it

Given a power fed to the X value (any value expressed in Watts), the actual power output of the cable is shown in the table in the form of remaining percentage. (for example, if we use a cable such as

M&P-ULTRAFLEX 13, entering 1000 Watts over a length of 35m, at a frequency of 144 MHz, there remains 74.7 % of 1000). **For maximum applicable power, see the Power Handling of the cable concerned.** From these values, have already been deducted the SRL values, typical of each one of our models, for the respective frequencies.

REMEMBER: Make sure to match the line accurately!

						M 8	kP-U	JLTF	RAFI	EX	13					
	leng	th>	16,4	32,8	49,2	65,6	82	114,8	164	246	328	426,5	524,9	656,2	984,2	feet
	Wave length	MHz	5	10	15	20	25	35	50	75	100	130	160	200	300	m
	85.71 m	3,5	99,2	98,6	97,9	97,3	96,6	95,3	93,4	90,4	87,4	84,0	80,7	76,5	66,9	
	42.85 m	7	99,0	98,2	97,3	96,5	95,7	94,0	91,6	87,8	84,0	79,8	75,8	70,7	59,5	C
	21.42 m	14	98,7	97,5	96,3	95,2	94,0	91,8	88,5	83,3	78,4	72,9	67,8	61,6	48,3	sef
Se	10.71 m	28	98,2	96,5	94,9	93,3	91,7	88,6	84,1	77,2	70,9	63,9	57,7	50,3	35,6	u s
en:	6 m	50	97,6	95,4	93,2	91,1	89,0	85,0	79,3	70,7	63,0	54,9	47,8	39,7	25,0	
Frequenze	2 m	144	95,8	91,8	88,1	84,4	80,9	74,7	65,6	53,1	43,1	33,4	26,0	18,5	7,9	าล
re	69 cm	430	92,7	86,0	79,9	74,1	68,8	59,3	47,4	32,7	22,5	14,3	9,1	5,0		out
_	23.1 cm	1296	86,5	75,2	65,4	56,9	49,5	37,4	24,5	12	5,7					ťpu
es	12.5 cm	2400	81,2	66,4	54,2	44,2	36,1	24,0	12,9	4,3						t (
Frequencies	10 cm	3000	78,6	62,4	49,5	39,2	31,0	19,3	9,2							esi
ne	7.5 cm	4000	75,2	57,1	43,3	32,7	24,7	13,9	5,6							dua
eq	6 cm	5000	72,4	52,8	38,5	28,0	20,3	10,4	3,5							p l
1	5 cm	6000	69,1	48,4	33,7	23,4	16,1	7,2								Useful signal output (residual power %)
	3.75 cm	8000	64,6	42,2	27,4	17,6	11,1	4,0								er
	3 cm	10.000	58,7	35,1	20,5	11,5	5,9									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	2.5 cm	12.000	54,8	30,5	16,4	8,2	3,4									

M&P-ULTRAFLEX 13 (Power Handling/Temperature)

				Temperature C° / F°											
	Wave length	MHz	-10 / 14	-5 / 23	0 / 32	10 / 50	20 / 68	30 / 86	40 / 104	50 / 122	60 / 140	70 / 158			
	166.66 m	1,8	18000	18000	18000	1800	17278	15511	13800	11771	9743	7728			
	85.71 m	3,5	18000	17946	17418	16314	15019	13483	11996	10232	8469	6718			
	42.85 m	7	14479	13993	13581	12721	11710	10513	9353	7978	6603	5238			
	30 m	10	12301	11888	11539	10807	9949	8932	7947	6778	5610	4450			
	21.42 m	14	10512	10159	9860	9235	8502	7632	6790	5792	4794	3803			
	14.28 m	21	8873	8574	8322	7795	7176	6442	5732	4889	4047	3210			
	10.71 m	28	7527	7274	7060	6613	6088	5465	4862	4148	3433	2723			
Se	6 m	50	5786	5591	5427	5083	4679	4201	3738	3188	2639	2093			
Ü.	3 m	100	4297	4153	4031	3775	3475	3120	2776	2368	1960	1554			
n	2.08 m	144	3658	3535	3431	3214	2958	2656	2363	2016	1668	1323			
Frequenze	1.5 m	200	3312	3201	3107	2910	2679	2405	2140	1825	1511	1198			
Ц Ц	75 cm	400	2279	2202	2137	2002	1843	1655	1472	1256	1039	824	<		
_	69 cm	430	2208	2134	2071	1940	1786	1603	1426	1217	1007	799	WATT		
B S	37.5 cm	800	1556	1504	1460	1367	1259	1130	1005	858	710	563	4		
C.	30 cm	1000	1383	1336	1297	1215	1118	1004	893	762	631	500	-		
en	23.1 cm	1296	1187	1147	1113	1043	960	862	767	654	541	429			
Frequencies	12.5 cm	2400	818	791	768	719	662	594	529	451	373	296			
ec	10 cm	3000	719	695	675	632	582	522	465	396	328	260			
Ē	7.5 cm	4000	603	583	566	530	488	438	390	333	275	218			
	6 cm	5000	529	512	497	465	428	384	342	292	241	192			
	5 cm	6000	473	457	443	415	382	343	305	260	216	171			
	4.2 cm	7000	428	413	401	376	346	311	276	236	195	155			
	3.75 cm	8000	397	383	372	349	321	288	256	219	181	144			
	3.3 cm	9000	368	356	345	323	298	267	238	203	168	133			
	3 cm	10.000	342	330	320	300	276	248	221	188	156	124			
	2.5 cm	12.000	301	291	282	265	244	219	195	166	137	109			

Connector "N" type : C.N.UF13M-S

Insert in the cable components A, B, C and immediately after, make a circular cut on the black PVC jacket at the indicated length shown in the caliber (in mm). Subsequently remove it.

Insert component D after having opened the braid as shown in the picture. Push component D between the foil and the braid until it stops against the black PVC jacket.

Flatten the wires as shown in the picture and cut the excess.

Cut and remove the tape and dieletric for a length as shown in the picture (8mm).

Insert the first teflon disc like in the above picture.

Insert the second teflon disc like in the above picture and subsequently the central pin. Solder the pin to the inner conductor, inserting tin in the provided hole. Avoid heating the pin for a too long time in order not to damage with excessive heat the cable dielectric (which is not made in teflon!)

Insert the connector and fasten accurately until the o-ring present in component A, will be pressed against the connector body. Inside, the rubber component C (pic. 1) will expand, granting optimal sealing against moisture and a perfect contact to ground.

M&P HyperFlex 13^{7.500}

EXTRAFLEXIBLE UV resistant PVC jacket. PVC Ø 12,7 ± 0,15 mm (0,500 inches)

0.14

0,17

0,22

0,26

0,30

0,38

0,45

0,59

0,88

1 10

High resistance copper clad aluminium screen (CCA) made by means of 24 spools braiding machines.(50% more crossovers if compared to traditional 16 spools machines.) This braid is HIGHLY EFFECTIVE AGAINST LOW FREQUENCY IMPULSIVE NOISES. SCREENING PERCENTAGE: 70% 168 wires

Inner conductor made of 37x0,56 stranded, geometric and concentric annealed copper

wires. Purity 99,99%. (annealed copper tening process) (37x0,022 inches) Cu 37x0,56 mm - Ø 3.9 mm (0,153 inches)

ELECTRICAL DATA

Impedance @200MHz:	50 Ohm ±
Minimum bending radius:	
Multiple bends(15)/single bend	127/80 mn
Temperature range:	
installation	-40° to +60
operative	-55° to +85
Capacitance:	75 pF/m ±
Velocity ratio:	86 %
Screening efficiency:	
100-2000 MHz	>105 dB
Class	A++
Inner conductor resistance:	2 Ohm/Km
Outer conductor resistance:	12 Ohm/K
Tension test (spark test):	8 kV
Weight (100m):	17,4 Kg
Maximum peak power:	20 KWATT

Screening foil, highly effective against high frequency interferences. The copper foil has an applied PE-coating, placed in order to prevent foil cracking due to short radius bends. SCREENING PERCENTAGE 100%

In a saw

CU-POL

m Radi

High pressure physical injection foamed polyethylene, TRIPLE LAYER DIELECTRIC. FPE Ø 9,9 ± 0.05 mm

	0,0	1,10
200 MHz	4,28	1,30
400 MHz	6,19	1,89
430 MHz	6,41	1,95
800 MHz	9,0	2,74
1000 MHz	10,14	3,09
1296 MHz	11,7	3,57
2400 MHz	16,68	5,08
3000 MHz	18,9	5,76
4000 MHz	22,45	6,84
5000 MHz	25,68	7,83
6000 MHz	28,71	8,75
7000 MHz	31,71	31,71
8000 MHz	34,57	10,54
9000 MHz	37,5	11,43
0.000 MHz	40,5	12,34
2.000 MHz	46,0	14,02

ATTENUATION at 20°C

FREQUENCY dB/100m dB/100ft

0,47

0.55

0.71

0.85

1,0

1.25

1,46

1,93

2,88

36

1,8 MHz

3,5 MHz

7.0 MHz

10 MHz

14 MHz

21 MHz

28 MHz

50 MHz

100 MHz

144 MHz

SRL	
0,3-600 MHz	>30 dE

600-1200 MHz

1200-2000 MHz

POWER HANDLING (at 40°C/104°F)

>25 dB

>20 dB

	OTENTIA	abeline (at to onlot i)	
FREQUENCY	MAXP	FREQUENCY	MAXP
1,8 MHz	14681 W	800 MHz	1022 W
3,5 MHz	12650 W	1000 MHz	907 W
7,0 MHz	9880 W	1296 MHz	786 W
10 MHz	8321 W	2400 MHz	552 W
14 MHz	7130 W	3000 MHz	487 W
21 MHz	5732 W	4000 MHz	410 W
28 MHz	4962 W	5000 MHz	358 W
50 MHz	3873 W	6000 MHz	320 W
100 MHz	2795 W	7000 MHz	290 W
144 MHz	2396 W	8000 MHz	266 W
200 MHz	2150 W	9000 MHz	245 W
400 MHz	1486 W	10.000 MHz	227 W
430 MHz	1435 W/	12 000 MHz	200 W

For step by step assembly instructions of connectors, please visit our website www.messi.it

Due to the dimensional parameters of this cable, the frequency of 2500 MHz +/- 15 Mhz is not usable.

3

)° C 5° C 2

Given a power fed to the X value (any value expressed in Watts), the actual power output of the cable is shown in the table in the form of remaining percentage. (for example, if we use a cable such as

M&P-HYPERFLEX 13, entering 1000 Watts over a length of 35m, at a frequency of 144 MHz, there remains 74.7 % of 1000).

For maximum applicable power, see the Power Handling of the cable concerned. From these values, have already been deducted the SRL values, typical of each one of our models, for the respective frequencies.

REMEMBER: Make sure to match the line accurately!

						M8	kP-H	IYPE	ERFI	EX	13					
	leng	th>	16,4	32,8	49,2	65,6	82	114,8	164	246	328	426,5	524,9	656,2	984,2	feet
	Wave length	MHz	5	10	15	20	25	35	50	75	100	130	160	200	300	m
	85.71 m	3,5	99,3	98,6	98,0	97,4	96,8	95,6	93,8	90,8	88,0	84,7	81,6	77,5	68,3	
	42.85 m	7	99,1	98,3	97,5	96,7	95,9	94,3	92,1	88,4	84,8	80,8	76,9	72,0	61,1	C
	21.42 m	14	98,8	97,6	96,5	95,4	94,3	92,2	89,0	84,0	79,3	74,0	69,1	63,0	50,0	sef
Ze	10.71 m	28	98,2	96,6	95,0	93,4	91,8	88,8	84,4	77,6	71,3	64,5	58,3	51,0	36,4	l l l
/ Frequenze	6 m	50	97,7	95,6	93,5	91,4	89,4	85,5	80,0	71,6	64,0	56,0	49,0	41,0	26,3	
nb	2 m	144	95,8	91,9	88,2	84,6	81,2	74,7	66,0	53,6	43,6	33,9	26,4	19,0	8,2	lal
re	69 cm	430	92,7	86,1	80,0	74,3	69,0	59,5	47,6	32,9	22,7	14,5	9,3	5,1		out
	23.1 cm	1296	86,7	75,8	66,1	57,7	50,4	38,3	25,4	12,6	6,1					ud:
Frequencies	12.5 cm	2400	81,9	67,5	55,6	45,8	37,7	25,4	14,0	5,0						t
nci	10 cm	3000	79,4	63,7	51,1	40,9	32,7	20,8	10,4							esi
ne	7.5 cm	4000	76,2	58,6	45,1	34,6	26,5	15,4	6,5							ang
eq	6 cm	5000	73,4	54,4	40,2	29,6	21,8	11,6	4,2							d lp
Ъ	5 cm	6000	70,3	50,0	35,5	25,1	17,6	8,3								V V
	3.75 cm	8000	65,6	43,5	28,7	18,8	12,1	4,6								Useful signal output (residual power %)
	3 cm	10.000	59,6	36,2	21,5	12,3	6,6									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	2.5 cm	12.000	55,7	31,5	17,3	8,9	3,9									

M&P-HYPERFLEX 13 (Power Handling/Temperature)

						Temj	perature C	° / F °					
	Wave length	MHz	-10 / 14	-5 / 23	0 / 32	10 / 50	20 / 68	30 / 86	40 / 104	50 / 122	60 / 140	70 / 158	
	166.66 m	1,8	18000	18000	18000	18000	18000	16501	14681	12523	10365	8221	
	85.71 m	3,5	18000	18000	18000	17204	15838	14219	12650	10790	8931	7084	
	42.85 m	7	15295	14781	14346	13437	12370	11105	9880	8428	6975	5533	
	30 m	10	12880	12448	12081	11316	10417	9352	8321	7097	5874	4660	
	21.42 m	14	11037	10666	10353	9697	8927	8014	7130	6082	5034	3993	
	14.28 m	21	8873	8574	8322	7795	7176	6442	5732	4889	4047	3210	
	10.71 m	28	7682	7424	7205	6749	6213	5578	4962	4233	3503	2779	
ZG	6 m	50	5995	5794	5624	5267	4849	4353	3873	3304	2734	2169	
Ü	3 m	100	4327	4182	4059	3801	3500	3142	2795	2384	1973	1565	
m	2.08 m	144	3709	3584	3479	3258	3000	2693	2396	2044	1691	1342	
eq	1.5 m	200	3327	3216	3121	2923	2691	2416	2150	1834	1518	1204	
Frequenze	75 cm	400	2301	2223	2158	2021	1861	1671	1486	1268	1049	832	<
_	69 cm	430	2222	2147	2084	1952	1797	1613	1435	1224	1013	804	WATT
es	37.5 cm	800	1582	1529	1484	1390	1280	1149	1022	872	722	572	<u> </u>
C	30 cm	1000	1404	1357	1317	1234	1136	1020	907	774	641	508	-
en	23.1 cm	1296	1217	1176	1142	1069	984	884	786	671	555	440	
Frequencies	12.5 cm	2400	854	825	801	750	691	620	552	470	389	309	
e.	10 cm	3000	754	728	707	662	609	547	487	415	344	273	
Ē.	7.5 cm	4000	634	613	595	557	513	461	410	350	289	229	
	6 cm	5000	555	536	520	487	449	403	358	306	253	201	
	5 cm	6000	496	479	465	436	401	360	320	273	226	179	
	4.2 cm	7000	449	434	421	395	363	326	290	247	205	162	
	3.75 cm	8000	412	398	386	362	333	299	266	227	188	149	
	3.3 cm	9000	380	367	356	334	307	276	245	209	173	137	
	3 cm	10.000	352	340	330	309	284	255	227	194	160	127	
	2.5 cm	12.000	310	299	290	272	250	225	200	171	141	112	

Connector "N" type : C.N.UF13M-S

Insert in the cable components A, B, C and immediately after, make a circular cut on the black PVC jacket at the indicated length shown in the caliber (in mm). Subsequently remove it.

Insert component D after having opened the braid as shown in the picture. Push component D between the foil and the braid until it stops against the black PVC jacket.

Flatten the wires as shown in the picture and cut the excess.

Cut and remove the tape and dieletric for a length as shown in the picture (8mm).

Insert the first teflon disc like in the above picture.

Insert the second teflon disc like in the above picture and subsequently the central pin. Solder the pin to the inner conductor, inserting tin in the provided hole. Avoid heating the pin for a too long time in order not to damage with excessive heat the cable dielectric (which is not made in teflon!)

Insert the connector and fasten accurately until the o-ring present in component A, will be pressed against the connector body. Inside, the rubber component C (pic. 1) will expand, granting optimal sealing against moisture and a perfect contact to ground.

High resistance "tear proof" PVC jacket. PVC Ø 10,8 ± 0,15 mm (0,425 inches)

CE

Pb

RoHS

0,36

0,43

0,55

0.61

0,70

A DIMINI

mille o

LAN LAW

Double special screen made of a silver plated copper BRAID (CuAg). Exceptional long lasting performance: silver oxide has even better conductivity than silver itself. Resulting is an outstanding operative life, expecially nearby the sea. The braiding process is operated by means of 24 spools braiding machines. Highly effective against low frequency impulsive noises.

RG 214 A/U Míl C17-F

1° screen : 144 wires with 96% coverage

Solid polyethylene DIELECTRIC PE Ø 7,25 ± 0,05 mm

Inner conductor made of 7X0,75 stranded geometric and concentric silver plated copper wires. Purity 99,99% annealed. (annealed = thermal softening process) (7x0,029 inches) CuAg 7X0,75 mm Ø 2,25 mm (0,088 inches)

2° screen : 168 wires with 98% coverage

SRL

0.3-600 MHz

600-1200 MHz

1200-2000 MHz

am Radi

ELECT	RICAL DA
Impedance:	50 Ohm
Minimum bending radius:	
Multiple bends/single ben	d 120/60 r
Capacitance:	101 pF/r
Velocity ratio:	66 %
Screening efficiency:	
100-900 MHz	>80 dB
Inner conductor resistanc	e: 5,5 Ohm
Outer conductor resistance	ce: 4 Ohm/ł
Tension test (spark test):	8 kV
Weight (100m):	20 Kg
Maximum peak power:	16 KW

TRICAL DATA			
	50 Ohm ± 3		
s:			
end	120/60 mm		
	101 pF/m ± 2		
	66 %		
	>80 dB		
nce:	5,5 Ohm/Km		
nce:	4 Ohm/Km		
):	8 kV		
	20 Kg		

>30 dB

>30 dB

>25 dB

21 MHz	2,9	0,88		
28 MHz	3,4	1,04		
50 MHz	4,6	1,40		
100 MHz	6,2	1,88		
144 MHz	8,3	2,53		
200 MHz	10,0	3,04		
400 MHz	14,5	4,41		
430 MHz	15,4	4,70		
800 MHz	21,6	6,58		
1000 MHz	25,3	7,71		
1296 MHz	31,8	9,69		
/ER HANDLING (at 40C°/104 F°)				

ATTENUATION at 20°C

	POWER HANDLING	(at 40C°/104 F
	FREQUENCY	MAXP
	1,8 MHz	5533 W
	3,5 MHz	3429 W
	7,0 MHz	4000 W
	10 MHz	3600 W
	14 MHz	3130 W
	21 MHz	2483 W
	28 MHz	2118 W
	50 MHz	1565 W
	100 MHz	1161 W
	144 MHz	867 W
	200 MHz	720 W
	400 MHz	497 W
st	430 MHz	468 W
	800 MHz	333 W
	1000 MHz	285 W
	1296 MHz	226 W

Our products are manufactured in compliance with: CEI 46-1 (construction parameters); EN 50117(screening efficiency); CEI EN 50289(SA te methods); IEC 60332-1-2(cables with LSZH jacket)

For step by step assembly instructions of connectors, please visit our website www.messi.it

 $Mil C_{17}$ High resistance copper screen (Cu) made by means

RG 213/7

High resistance "tear proof" PVC jacket. PVC Ø 10,2 ± 0,15 mm (0,401 inches)

Community

of 24 spools braiding machines. (50% more crossovers if compared to traditional 16 spools machines.) This braid is HIGHLY EFFECTIVE AGAINST LOW FRE-QUENCY IMPULSIVE NOISES. SCREENING PERCENTAGE: 91,5% 240 wires

Solid polyethylene DIELECTRIC PEØ7.25 ± 0,05 mm

Inner conductor made of 7X0,75

stranded geometric and concentric

Purity 99,99% annealed.

copper wires.

(7x0,029 inches)

Cu 7x0,75 mm

Ø 2,25 mm (0,088 inches)

SRL

ELECTRICAL DATA

m Radi

Cable

0.3-600 MHz 600-1200 MHz 1200-2000 MHz

>30 dB >25 dB >25 dB

POWER HANDLING (at 40C°/104 F°)

1296 MHz

261 W

50 Ohm ± 3 FREQUENCY MAXP Impedance: 1,8 MHz 7347 W Minimum bending radius: 3,5 MHz 5538 W Multiple bends/single bend 120/60 mm (annealed = thermal softening process) 7,0 MHz 4000 W Capacitance: 101 pF/m ± 2 10 MHz 3429 W Velocity ratio: 66 % 14 MHz 2880 W Screening efficiency: 21 MHz 2400 W 100-900 MHz >55 dB 28 MHz 2087 W Inner conductor resistance: 5.8 Ohm/Km 50 MHz 1600 W Outer conductor resistance: 5,7 Ohm/Km 100 MHz 1180 W 8 kV Tension test (spark test): 144 MHz 960 W 13,8 Kg Weight (100m): 200 MHz 800 W Maximum peak power: 16 KW 400 MHz 533 W 511 W 430 MHz 800 MHz 351 W 1000 MHz 306 W

For step by step assembly instructions of connectors, please visit our website www.messi.it

FREQUENCY	dB/100m	dB/100ft
1,8 MHz	0,98	0,30
3,5 MHz	1,3	0,40
7,0 MHz	1,8	0,55
10 MHz	2,1	0,64
14 MHz	2,5	0,76
21 MHz	3,0	0,91
28 MHz	3,45	1,05
50 MHz	4,5	1,37
100 MHz	6,1	1,86
144 MHz	7,5	2,29
200 MHz	9,0	2,74
400 MHz	13,5	4,11
430 MHz	14,1	4,30
800 MHz	20,5	6,25
1000 MHz	23,5	7,16
1296 MHz	27,6	8,41

ATTENUATION at 20°C

High resistance "**tear proof**" PVC jacket. **PVC Ø 5 ±** 0,15 **mm**

(0,197 inches)

- Manual V

High resistance screen made of a tinned copper **BRAID** (CuSn). The braiding process is operated by means of **16 spools** braiding machines. Highly effective against low frequency impulsive noises.

SCREENING PERCENTAGE: 92% 112 wires

Solid polyethylene dielectric **PE Ø 2,95** ± 0,05 mm

Inner conductor made of 19x0,18 stranded geometric and concentric tinned copper (CuSn). CuSn 19x0,18 mm (19x0,007 inches)

m Radi

Cab

DAO

Las Lav

Ø 0,90 mm (0,035 inches)

ELECTRICAL DATA

Impedance @200MH	Hz :	50 Ohm ± 3			1296 MHz	63,0	19,20
Minimum bending ra	dius:						
Multiple bends/single		50/25 mm	SRL		POWER HANDL		
Temperature:		-40° to +60° C	0,3-600 MHz	>35 dB	FREQUENCY	MA	
operative -55° to +85° C 600-120	600-1200 MHz	>30 dB	1,8 MHz		1 W		
Capacitance:		101 pF/m ± 2	1200-2000 MHz >30 d	>30 dB	3,5 MHz		8 W
Velocity ratio:		66 %	1200 2000 1112	- 00 GB	7,0 MHz	846	5 W
Screening efficiency:		00 /0			10 MHz	702	2 W
					14 MHz	589	9 W
100-900 MHz		>55 dB			21 MHz	493	8 W
Inner conducotr resis	stance:	37 Ohm/Km			28 MHz	418	3 W
Outer conductor resi	stance:	15 Ohm/Km			50 MHz	306	5 W
Tension test (spark tes	st):	4 kV			100 MHz	209	W
					144 MHz	171	1 W
Weight (100m):		3,7 Kg			200 MHz	149	9 W
Maximum peak power:		2000 WATT			400 MHz	99	W
					430 MHz	95	W

For step by step assembly instructions of connectors, please visit our website www.messi.it

Our products are manufactured in compliance with: CEI 46-1 (construction parameters); EN 50117(screening efficiency); CEI EN 50289(SA test methods); IEC 60332-1-2(cables with LSZH jacket)

CE

Pb

ATTENUATION at 20°C

FREQUENCY	dB/100m	dB/100ft
1,8 MHz	2,1	0,64
3,5 MHz	2,9	0,88
7,0 MHz	3,9	1,19
10 MHz	4,7	1,43
14 MHz	5,6	1,71
21 MHz	6,7	2,04
28 MHz	7,9	2,41
50 MHz	10,8	3,29
100 MHz	15,8	4,81
144 MHz	19,3	5,88
200 MHz	22,1	6,73
400 MHz	33,3	10,14
430 MHz	34,9	10,64
800 MHz	51,1	15,57
1000 MHz	58.0	17,67
1296 MHz	63,0	19,20

RG 58 C/U Míl C17-F
CPR 6 x 0,75 mm²

Shielded cable for rotor operated antennas

DATASHEET					
Number of conductors:	6 (+ one PVC cilinder for centering the cable)				
Section of each conductor:	0,75 mmq ²				
Conductor colors:	White				
	Brown				
	Green				
	Grey				
	Yellow				
	Pink				
Shielding:	Alluminium tape matched with a polyesther film				
	(+ flexible earth conductor)				
External insulation:	Dark grey PVC Jacket - FLAME RETARDANT - Ø 7,6mm				
Packaging:	Coils 100m				
	Coils 50m				

Cable for radial grounding - GR 163

Inner conductor	pure copper 99,99 %
diameter	1,63 mm - (2,1 mm ²)
Conductor resistance (Ohm/Km)	7,8
Jacket	black PE
diameter	2,9 mm

Doesn't fear neither water nor corrosion and if well sealed on both ends, can be buried underground and it is virtually eternal. (Remember to seal the ends)

COMPARISON CHART ATTENUATION-POWER RATIO

The graphs below give a clear view of the behavior of our top models on a 50 m stretch, compared to the old fashioned RG 213/U. Note that the M&P-ULTRAFLEX 7 despite being just 7.3 mm (compared with 10.3 mm of RG213/U), outclasses this old item in every parameter. Graphs can be used to calculate the power loss in any way and for any Messi & Paoloni cable. Let's take an example: Model M&P-AIRBORNE 5 Attenuation at 430 MHz 19 dB/100m.

If the cable stretch is $25m \log$, calculate 19 dB divided by 4 = 4.75 dB.

Let us watch on the left side of the table (dB/50m) and positioning with a ruler at the 4.75 dB position, we can observe the other end in the right column (PERCENT RESIDUAL WATT) the percentage residual output of the cable.

Example of the power loss in a 30m stretch between model M&P-AIRBORNE 5 and the traditional RG 58 C/U.

f MHz

ATTENUATION/SRL RATIO

When designing a transmission line, it is necessary to carefully choose the cable to be used, based on the frequency and the distance between the transmitter and the antenna. We assume that the impedance matching between the various components has been treated with the utmost diligence.

Everyone knows how important is to buy a REALLY low-loss cable, but not everyone reminds that -3dB = ½ the power available. It is also important to verify that the difference between the value of SRL and attenuation should be as wide as possible. In fact, as seen in the picture, it is inevitable that the two curves will cross each other. With increasing frequency, the attenuation curve (A) is approaching more and more to the reflected waves one (B). Comes the point where the attenuation value in dB and that of SRL meet each other. Starting from this frequency and beyond, the output signal will be ZERO, regardless of the input power value.

The example concerns a test on the cable

M&P-ULTRAFLEX 7, (a 35 meters long coil). In these conditions the signal is **reduced to zero** at the frequency of 4.2 GHz (in transmission only). It is clearly inadvisable to use such a cable length at this frequency, but the chart clearly indicates that at all frequencies lower than 4.2 GHz, the transmission line works in an excellent manner. Increasing the cable length, inevitably increases the attenuation so that the intersection with the SRL curve, will happen before (at a lower frequency). Differently, shortening the cable length will assure a correct use at higher frequencies.

In the following chart we can see how the SRL affects the power. The graph is showing a **50m long**, perfectly tuned transmission line. The cable used is **M&P-BROAD-PRO 50C**. The red curve is the attenuation, the blue curve is the SRL. The three black curves, are 3 different input powers: 200, 500 and 1000 Watts. As previously said, regardless of the input power, when the SRL dB values are equivalent to attenuation values, there is no more output signal. Please note that as soon as the SRL value increases, (for example due to an impedance mismatch), the output power quickly collapses. Although an optimal SRL (**S**tructural **R**eturn **L**oss, in simple words, attenuation on the reflected wave) is typically between -40 and -30 dB, we can say that until -18 dB there are no considerable losses. Increasing the SRL to higher values, the closer the SRL values are to 0, the more the effects evolve from troublesome to destructive. In the presence of strong SRL, (dB values close to zero), along the cable will occur overvoltage and overcurrent.

Implementation of the Messi & Paoloni research and development laboratory (Roberto Moroni) in collaboration with Marco Olivieri (IW6DCN) ARI Ancona and Stefano Magnarello (IK6EIW)

Peak Power

Peak Voltage

It is the maximum peak voltage applied between the conductors of the cable in order to prevent the dielectric piercing (breakdown voltage). This depends exclusively on the characteristics of the insulating dielectric.

The formula for determining the Peak Voltage is as follows: Ed * Ri * In (Re / Ri) Where "Ed" is the dielectric strength of the insulation, "Ri" is the inner radius of the dielectric and "Re" the outer radius.

By Peak voltage and the Impedance is obtained Peak Power, which is independent from frequency. It is calculated as: $(V \text{ peak max})^2 / (2 * Zo)$, where Zo is the impedance of the cable. This value must never be exceeded.

Power Handling

Graph N1

The power Handling indicates the parameters for power in which a cable can operate, depends on the characteristics of the conductors (inner / outer), but especially by the ability of the dielectric to dissipate heat. The power handling depends strongly on the frequency of use and is inversely proportional to this. The values stated in the tab, refer to the temperature **detected on the surface of the cable** at 40 C°/104 F°(please take in consideration that when exposed to direct sunlight, the cable overheats), a VSWR of less than 1.5 and an altitude of 0-300m above sea level.

The higher is the operating temperature (ambient t.), the lower the chances to dissipate the heat generated inside the cable towards the outside. Conversely, with low temperatures the heat is easily dissipated so that the cable can operate at higher powers. See Table...

Temperature Factor K1 / Fattore Temperatura K1

The VSWR table, has to be considered valid only for measurements taken in proximity of the antenna.

The Power Handling is calculated at the temperature of 40°C/104 F° (tested directly on the surface of the cable itself) and the variations in more or less, are leading to a decrease or increase of this value. See also all tables where this factor has been already calculated for each cable (T1,T2,T3,T4,T5,T6).

Another factor to consider, is the impedance matching of the sys-If not optimal, it generates stationary waves (VSWR). At low to metem. dium values (1 - 1.5), these do not substantially modify the power handling, but at higher values, the cable has to withstand both the incident power and the reflected one. Consequently the power handling drops. In the GRAPH 2, the coefficient K2 is obtained (VSWR), which multiplied by the value of the Power handling declared, provides the maximum allowed power for the VSWR tested in your line.

Coefficient VSWR / Coefficiente ROS

It's interesting to know that even the altitude interacts with this data: the higher you climb in altitude, the more the heat dissipation decreases. The graph N₃, provides the coefficient K₃ related to altitude. In order to have a given absolute figure of the power handling, you must multiply the value related to the temperature (in the Tabs T1,T2,T3,T4,T5,T6) by the factor K2 (VSWR) and the

It must also be considered the type of Rx-Tx transmission (RTTY or SSB). Physical accidental alterations and excessive VSWR values (impedance mismatch), are certainly increasing the lost power dissipated in the form of heat. Moreover unwanted stationary waves ratios, are making the situation even worse. In SSB operations a 5/6 seconds transmission time, followed by the same reception lag, is giving the chance to nearly double the power handling values. Be aware that the power should never be exceeding the declared peak power value.

Attenuation Vs Temperature

The temperature, also affects the attenuation of the cable (dB).

Also in this case, with modest temperature ranges, the variation is negligible, but if you move far away from the reference temperature (in this case $20C^{\circ}$ / $68F^{\circ}$), this can lead to variations remarkable by the more scrupulous operators. If you want to know the variation of attenuation related to temperature, multiply the attenuation value by the K4 coefficient, shown in the graph 4.

The VSWR table, has to be considered valid only for measurements taken in proximity of the antenna.

In critical situations like this, do not tie up the cable directly on the sheath. As clearly visible in the image, it is formed a constriction which rapidly deteriorates the cable and generates overheating in case of amplification (A and C). This is because the crushing of the dielectric, brings to an impedance mismatch with resulting peak of VSWR and localized heating of the cable. Instead, use an ordinary corrugated tube, tying it along the pole up to the point B, **especially securing the bracket D**, for discharging on it the same cable weight. Free to slide inside the corrugated tube, the cable will not undergo more constrictions of any kind, extending the operational life, especially with high amplifications in play.

With reference to norms: IEC 60092 and CEI 11/17 we can affirm as follows:

To determine how tightly a given cable can be bent without damage, the radius of the curve of the inner edge of any bend, shall not be less than 10 times the cable Overall Diametre (O.D.). Since the radius is one half the diameter, you can then multiply your result by 2 to get the actual diameter of the object that the cable can be safely bent around repeatedly, (for example a bobbin). In DXpeditions, there is a basic need to unwind the cable and later on to rewind it in the same bobbin. (multiple bends). For this operation, needed twice per DXpedition, please consider 20 times the cable O.D. (this will preserve your cable for a much longer number of **DXpeditions**) Solid inner conductor cables, need more attention, even though we have succeeded to make them a little more flexible (M&P-BROAD-PRO 50C). The smaller the bend radius, the greater is the material flexibility. Cables such as M&P-ULTRAFLEX 7 or M&P-ULTRAFLEX 10, having a stranded inner conductor, a strong and flexible 24 spools braid, and an excellent quality PVC jacket, ALLOW MORE, but never infringe the values in the cables datasheets. (always to be taken with good sense... careful)!

The diagram above illustrates a cable with a 7,3 centimeter bend radius (M&P-ULTRAFLEX 7). When meaning Outdoor use, we intend that the variety of harsh temperatures we could have outside, might change temporarily the physics of the cable components, requiring therefore more cautiousness. (20 times O.D.)

In case we need to effect a sharper bend, (ex. Like in a choke), we can do only if:

1) We shall effect Just a single bend (possibly always indoor)

2) The operation is made at temperatures never below 15° C $(59^{\circ}$ F)

3) The cable is coiled over a Cylinder with an O.D. equal or bigger than ten times the cable O.D.

The Q CODE FOR HAM RADIO OPERATORS

Source: Dario Grossi (IZ4UEZ) ARI Ferrara

SIGNAL Q	QUESTION ?	ANSWER, NOTICE OR ORDER		
QRA	What is the name of your station?	My name is		
QRB	How far approximately are you from my station?	The distance between our stations is aboutyour nautical miles (or kilometers)		
QRG	What is my exact frequency?	Your exact frequency is kHz (Or MHz).		
QRK	What is the intelligibility of my signals	The intelligibility of your signals is (scale of 1 to 5).		
QRL	Are you busy?	I'm busy Please do not interfere.		
QRM	Are you bothered by noise?	I am disturbed by interference.		
QRN	Are you bothered by noise of natural origin (storms, lightning)?	I am disturbed by natural origin noise		
QRO	Shall I increase transmitter power?	Increase (or increase) the transmission power.		
QRP	Shall I decrease transmitter power?	Decrease the transmission power.		
QRQ	Shall I send faster?	Increase the transmission speed [Words per minute].		
QRS	Shall I send more slowly?	Send more slowly [Words per minute].		
QRT	Shall I stop transmissions?	Close (or I close) transmissions.		
QRV	Are you ready?	I'm ready.		
QRX	When you call me again?	I'll get back at on kHz (or MHz).		
QRZ	Who is calling me?	You are called by on kHz (or MHz).		
QSA	What is the strength of my signals	The strength of your signals is (Scale from 1 to 5).		
QSB	Does my signal strength fade?	The strength of your signals varies.		
QSK	Can you hear me? If so, can I interrupt you?	I hear you, speak up.		
QSL	Can you receive?	Confirmed, received.		
QSO	Can you communicate with directly or through support?	I can communicate with directly NOTE: It is also synonymous of direct communication or direct connection.		
QSP	Will you transmit to?	I'll transmit back to		
QSY	Should I change my transmission to another frequency?	Change transmission to another frequency.		
QTH	What is your position	My position is : QTH generally describes the place from which you are transmitting.		
QTR	What time is it ?	lt's		

COMPARISON CHART

TABELLE COMPARAZIONE RAPPORTO ATTENUAZIONE/POTENZA

Residual Watts related to frequency and calculated on 1000 Watt input power. Watt residui in rapporto alla frequenza e calcolati su una potenza in ingresso di 1000 Watt.

	RG 213/U						
FREQ. MHz	Attenuations Attenuazioni dB/50 m	Residual WATT/50m					
1,8	0,49	893					
3,5	0,74	843					
7	1,05	758					
10	1,1	757					
14	1,2	745					
21	1,3	724					
28	1,53	695					
50	2,0	630					
100	3,1	489					
144	3,7	426					
200	4,45	358					
400	6,6	218					
430	7,01	199					
800	9,9	102					
1000	11,6	48					
1296	14,0	39					

M&P-BROAD-PRO 5oc					
FREQ. MHz	Att. dB/50 m	Residual WATT/50m			
1,8	0,3	928			
3,5	0,4	907			
7	0,54	883			
10	0,6	871			
14	0,69	852			
21	0,87	817			
28	0,96	800			
50	1,22	754			
100	1,76	667			
144	2,1	611			
200	2,55	556			
400	3,65	431			
430	3,8	417			
800	5,3	295			
1000	6,0	250			
1296	6,9	204			
2400	9,9	102			

M&F	M&P-ULTRAFLEX 10						
FREQ. MHz	REQ. MHz Attenuations dB/50 m						
1,8	0,21	952					
3,5	0,29	935					
7	0,44	903					
10	0,56	879					
14	0,73	845					
21	0,9	812					
28	1,03	788					
50	1,38	727					
100	1,99	632					
144	2,42	572					
200	2,88	515					
400	4,17	382					
430	4,34	368					
800	6,14	243					
1000	7,0	199					
1296	8,0	158					
2400	12,4	57,5					

M8	M&P-ULTRAFLEX 7							
FREQ. MHz	Attenuations Attenuazioni dB/50 m	Residual WATT/50m						
1,8	0,3	896						
3,5	0,45	863						
7	0,8	832						
10	0,9	803						
14	1,05	776						
21	1,3	741						
28	1,5	708						
50	2,0	630						
100	2,9	512						
144	3,45	451						
200	4,1	389						
400	5,9	257						
430	6,15	242						
800	8,55	139						
1000	9,65	108						
1296	11,2	75						

M&P-AIRBORNE 5						
FREQ. MHz	Attenuations Attenuazioni dB/30 m	Residual WATT/30m				
1,8	0,33	926				
3,5	0,44	902				
7	0,69	853				
10	0,89	813				
14	1,17	763				
21	1,43	718				
28	1,65	683				
50	2,15	608				
100	3,0	501				
144	3,40	456				
200	3,96	401				
400	5,55	278				
430	5,86	259				
800	8,19	151				
1000	9,18	120				
1296	10,65	86				

RG 58 C/U						
FREQ. MHz	Attenuations Attenuazioni dB/30 m	Residual WATT/30m				
1,8	0,63	864				
3,5	0,87	818				
7	1,17	763				
10	1,41	722				
14	1,68	679				
21	2,01	629				
28	2,37	579				
50	3,24	474				
100	4,74	335				
144	5,79	263				
200	6,63	217				
400	9,99	100				
430	10,47	89				
800	15,33	29				
1000	17,4	18				
1296	19,8	10				

CONVERSION CHART

TABELLE CONVERSIONE ROS/POTENZA RIFLESSA

voltage standing wave RATIO (VSWR) RAPPORTO ONDE STAZIONARIE (ROS)	VSWR (dB)	SRL STRUCTURAL RETURN LOSS (dB) PERDITE CUMULATIVE DI RIFLESSIONE	REFLECTED POWER (%) POTENZA RIFLESSA	TRANSMISSION LOSS (dB) PERDITA DI TRASMISSIONE	TRANSMITTED POWER (%) POTENZA TRASMESSA	MODELS M&P-BROAD-PRO 50C M&P-ULTRAFLEX 10 M&P-ULTRAFLEX 13/.500'' M&P-ULTRAFLEX 7 M&P-ULTRAFLEX 7 M&P-AIRBORNE 5 M&P-AIRBORNE 10
1	0	∞	0	0	100	
1,1	0,83	26,44	0,227	0,01	99,773	from 300 KHz to 450 MHz
1,2	1,58	20,83	0,826	0,036	99,174	from 450MHz to 1 GHz
1,3	2,28	17,69	1,7	0,075	98,3	from 1 GHz to 2 Ghz
1,4	2,92	15,56	2,78	0,122	97,22	
1,5	3,52	13,98	4	0,177	96	
1,6	4,08	12,74	5,33	0,238	94,67	
1,7	4,61	11,73	6,72	0,302	93,28	
1,8	5,11	10,88	8,16	0,37	91,84	
1,9	5,58	10,16	9,6	0,44	90,4	
2	6,02	9,54	11,1	0,512	88,9	
2,1	6,44	9	12,6	0,584	87,4	
2,2	6,85	8,52	14,1	0,658	85,9	
2,3	7,23	8,09	15,5	0,732	84,5	
2,4	7,6	7,71	17	0,807	83	
2,5	7,96	7,36	18,4	0,881	81,6	
2,6	8,3	7,04	19,8	0,956	80,2	
2,7	8,63	6,76	21,1	1,03	78,9	
2,8	8,94	6,49	22,4	1,1	77,6	
2,9	9,25	6,25	23,7	1,18	76,3	
3	9,54	6,02	25	1,25	75	
3,2	10,1	5,62	27,4	1,39	72,6	
3,4	10,6	5,26	29,8	1,53	70,2	
3,6	11,1	4,96	31,9	1,67	68,1	
3,8	11,6	4,68	34	1,81	66	
4	12	4,44	36	1,94	64	
5	14	3,52	44,4	2,55	55,6	
6	15,6	2,92	51	3,1	49	
7	16,9	2,5	56,3	3,59	43,8	
8	18,1	2,18	60,5	4,03	39,5	
9	19,1	1,94	64	4,44	36	
10	20	1,74	66,9	4,81	33,1	

Fonte / Source: Dario Grossi (IZ4UEZ) ARI Ferrara, implementation M&P Lab.

CONVERTION TABLE DECIBEL-VOLT-WATT (50 Ohm)

dDres	V	De	1	dDara	V	Da	dDies	V	De
dBm	V	Ро	-	dBm	V	Ро	dBm	V	Ро
+ 53	100.0	200 W		+ 30	7.10	1.0 W	+ 9	0.64	8 mW
+ 50	70.7	100 W		+ 29	6.40	800 mW	+ 8	0.58	6.4 mW
+ 49	64.0	80 W		+ 28	5.80	640 mW	+ 7	0.500	5 mW
+ 48	58.0	64 W		+ 27	5.00	500 mW	+ 6	0.445	4 mW
+ 47	50.0	50 W		+ 26	4.45	400 mW	+ 5	0.400	3.2 mW
+ 46	44.5	40 W		+ 25	4.00	320 mW	+ 4	0.355	2.5 mW
+ 45	40.0	32 W		+ 24	3.55	250 mW	+ 3	0.320	2.0 mW
+ 44	32.5	25 W		+ 23	3.20	200 mW	+ 2	0.280	1.6 mW
+ 43	32.0	20 W		+ 22	2.80	160 mW	+ 1	0.252	1.25 mW
+ 42	28.0	16 W		+ 21	2.52	125 mW	0	0.225	1.0 mW
+ 41	26.2	12.5 W		+ 20	2.25	100 mW	- 1	0.200	0.80 mW
+ 40	22.5	10 W		+ 19	2.00	80 mW	- 2	0.180	0.64 mW
+ 39	20.0	8 W		+ 18	1.80	64 mW	- 3	0.160	0.50 mW
+ 38	18.0	6.4 W		+ 17	1.60	50 mW	- 4	0.141	0.40 mW
+ 37	16.0	5 W		+ 16	1.41	40 mW	- 5	0.125	0.32 mW
+ 36	14.1	4 W]	+ 15	1.25	32 mW	- 6	0.115	0.25 mW
+ 35	12.5	3.2 W		+ 14	1.15	25 mW	- 7	0.100	0.20 mW
+ 34	11.5	2.5 W]	+ 13	1.00	20 mW	- 8	0.090	0.16 mW
+ 33	10.0	2 W		+ 12	0.90	16 mW	- 9	0.080	0.125 mW
+ 32	9.0	1.6 W]	+ 11	0.80	12.5 mW	- 10	0.071	0.10 mW
+ 31	8.0	1.25 W		+ 10	0.71	10 mW			

Abbreviations used in the HAM RADIO service

AR: End of message BK: "Break" Signal used to interrupt a transmission in progress CQ: Calling all stations CW: "Continuous Wawe" continuous wave telegraphy DE: Used to take apart the ID. from the station K: Invitation to transmit MSG: Message PSE: "Please" RTD: intelligibility, signal strength, tone R: Received **RX:** Receiver SIG: Signal **SK:** End of QSO (or even "Silent Key" = passage to a better life) **TNX:** Thanks **TX:** Transmitter **UR:** Your VA: end of work

Source : Dario Grossi (IZ4UEZ) ARI Ferrara

DEFINITIONS OF THE ELECTRICAL FEATURES OF A CABLE

CAPACITY:

The capacity of a cable is the value that indicates the properties of the dielectric to store electrical charges between the central conductor and the screen.

The capacity is expressed in pF (picofarad, 1 pF = 1×10^{-12} F). The higher is the capacity the more high frequencies are attenuated along the cable. So the **best cable** is the one that has the **lowest capacity**. (at the same impedance).

IMPEDANCE:

It indicates the opposition of a transmission line to the flow of electrons, it is expressed in Ohms and is derived from the relation between the voltage V and the current I at any point of the coaxial cable.

ATTENUATION:

It quantifies the loss of signal and is expressed in dB (Decibels). In reception and transmission (power) the attenuation is given by $10x\log_{10}(P_{in}/P_{out})$. The signal is halved every 3 dB.

SRL - STRUCTURAL RETURN LOSS:

It measures the intensity of reflected waves (toward the source) inside the cable. The SRL is highly affected by the imperfections of the impedance in one or more points along the transmission line.

SCREENING EFFICIENCY:

It generally indicates the ability of a screen to prevent electromagnetic interference, which can "contaminate" the signal along the cable and vice versa that the signal could be radiated outside of the cable. At high frequencies (> 30 MHz), this is expressed in **"Screening Attenuation" (SA)** and the unit of measurement is the decibel. At low frequencies (< 30 MHz), it's called **transfer impedance (Zt)** and it is expressed in mOhm/m.

The lower is the value in milliohms, the better is the cable performance.

In the old RG cables, the maximum screening efficiency obtained is 80 dB, while in our new cables is >105 dB (A++ CLASS).

The Zt in the old RG cables does not drop below 13 m Ω /m (RG 214), compared to 0.9 m Ω /m of our new cables:

- M&P-BROAD-PRO 50C and M&P-BROAD-PRO 50C Double Jacket
- M&P-ULTRAFLEX 13/.500" and M&P-HYPERFLEX 13/.500"
- M&P-ULTRAFLEX 10
- M&P-HYPERFLEX 10
- M&P-ULTRAFLEX 7
- M&P-AIRBORNE 5
- M&P-HYPERFLEX 5
- M&P-AIRBORNE 10

VELOCITY RATIO:

It's the speed which the signal travels at, along the cable, and it is expressed as a percentage of the light speed. In the cables with plain polyethylene, the best value reached is 66%, against the 85% of the cables with foamed polyethylene dielectric.

Source : M&P Lab. (Roberto Moroni)

- STANDARD PACKAGING -

MODEL	Quick description	Overall size over the jacket	Type of packaging	First value Ø Flange Second value inner flange to flange Third value Ø inner tube (bobbin)	Packing CODE	Meters per packing	Gross weight per packing unit
RG 58 C/U			Shrinkwrapped coil.	AR100	100	3,75 Kg	
RG 58 C/U	In compliance with		Shrinkwrapped coil.	Suitable for Arianna unwinder	AR200	200	7,45 Kg
RG 58 C/U	MIL-C17-F	Ø 5 mm 0,197 inches	Plastic bobbin	mm. 345x165x130 Hole Ø 45	B500	500	19,26 Kg
RG 58 C/U	military specification	0,137 menes	Plastic bobbin	mm. 345x325x130 Hole Ø 45	B1000	1000	37,78 Kg
RG 58 C/U	specification		Wooden drum	mm. 500x360x160 Hole Ø 80	B2000	2000	77,35 Kg
M&P-AIRBORNE 5	Evolution	C.	Shrinkwrapped coil.	Suitable for Arianna unwinder	AR100	100	2,40 Kg
VI&P-AIRBORNE 5	For DXers		Shrinkwrapped coil.	Suitable for Arianna unwinder	AR200	200	4,75 Kg
VI&P-AIRBORNE 5	5mm cables:	Ø 5 mm	Plastic bobbin	mm. 345x165x130 Hole Ø 45	B500	500	12,51 Kg
M&P-AIRBORNE 5	Performant waterproof	0,197 inches	Plastic bobbin	mm. 345x325x130 Hole Ø 45	B1000	1000	24,28 Kg
M&P-AIRBORNE 5	lightweight		Wooden drum	mm. 500x360x160 Hole Ø 80	B2000	2000	50,35 Kg
M&P-HYPERFLEX 5	Evolution		Shrinkwrapped coil.	Suitable for Arianna unwinder	AR100	100	4,2 Kg
M&P-HYPERFLEX 5	The best cable	5	Shrinkwrapped coil.	Suitable for Arianna unwinder	AR200	200	8,4 Kg
M&P-HYPERFLEX 5	available in the	Ø 5,4 mm	Plastic bobbin	mm. 345x165x130 Hole Ø 45	B400	400	17,56 Kg
V&P-HYPERFLEX 5	5mm range for attenuations and	0,212 inches	Plastic bobbin	mm. 345x325x130 Hole Ø 45	B800	800	34,38 Kg
VI&P-HYPERFLEX 5	extreme		Wooden drum	mm. 500x360x160 Hole Ø 80	B2000	2000	
	flexibility						87,35 Kg
M&P-ULTRAFLEX 7	Evolution			Suitable for Arianna unwinder	AR50	50	3,50 Kg
M&P-ULTRAFLEX 7	For DXers			Suitable for Arianna unwinder	AR100	100	6,95 Kg
M&P-ULTRAFLEX 7	7mm cables:	Ø 7,3 mm	Plastic bobbin	mm. 345x165x130 Hole Ø 45	B200	200	14,56 Kg
M&P-ULTRAFLEX 7	Performant lightweight	0,287 inches	Plastic bobbin	mm. 345x325x130 Hole Ø 45	B500	500	35,28 Kg
VI&P-ULTRAFLEX 7	ultraflexible		Wooden drum	mm. 500x360x160 Hole Ø 80	B1000	1000	72,35 Kg
VI&P-ULTRAFLEX 7		la	Wooden drum	mm. 750x335x210 Hole Ø 70	B2000	2000	150,8 Kg
VI&P-ULTRAFLEX 10			Shrinkwrapped coil.		T50	50	6,56 Kg
M&P-ULTRAFLEX 10	Evolution of	đ 100	Plastic bobbin	mm. 345x165x130 Hole Ø 45	B100	100	13,76 Kg
VI&P-ULTRAFLEX 10	10mm cables:	Ø 10,3 mm 0,405 inches	Plastic bobbin	mm. 345x325x130 Hole Ø 45	B200	200	26,78 Kg
VI&P-ULTRAFLEX 10	ultraflexible High performances		Wooden drum	mm. 500x360x160 Hole Ø 80	B500	500	68,35 Kg
M&P-ULTRAFLEX 10		a start	Wooden drum	mm. 750x335x210 Hole Ø 70	B1000	1000	142,8 Kg
M&P-HYPERFLEX 10	Evolution		Shrinkwrapped coil.		T50	50	5,6 Kg
M&P-HYPERFLEX 10	Best in its class		Plastic bobbin	mm. 345x165x130 Hole Ø 45	B100	100	11,86 Kg
M&P-HYPERFLEX 10	(10.3mm cables) for flexibility and	Ø 10,3 mm	Plastic bobbin	mm. 345x325x130 Hole Ø 45	B200	200	23 Kg
M&P-HYPERFLEX 10	amazing attenua-	0,405 inches	Wooden drum	mm. 500x360x160 Hole Ø 80	B500	500	58,9 Kg
M&P-HYPERFLEX 10	tions, sturdy and lightweight		Wooden drum	mm. 750x335x210 Hole Ø 70	B1000	1000	123,8 Kg
M&P-BROAD-PRO 50C			Shrinkwrapped coil.		T50	50	6,56 Kg
M&P-BROAD-PRO 50C	Evolution of		Plastic bobbin	mm. 345x165x130 Hole Ø 45	B100	100	13,76 Kg
M&P-BROAD-PRO 50C	10mm cables:	Ø 10,3 mm	Plastic bobbin	mm. 345x325x130 Hole Ø 45	B200	200	26,78 Kg
M&P-BROAD-PRO 50C	semi-flexible Very high	0,405 inches	Wooden drum	mm. 500x360x160 Hole Ø 80	B500	500	68,35 Kg
M&P-BROAD-PRO 50C	perform.		Wooden drum	mm. 750x335x210 Hole Ø 70	B1000	1000	142,8 Kg
BROAD-PRO 50C LSZH	black LSZH jacket	Ø 10,3 mm	Wooden drum	mm. 750x335x210 Hole Ø 70	B1000	1000	154,8 Kg
W&P-AIRBORNE 10		Ø 10,3 mm	Shrinkwrapped coil.	11111. 730X333X210 1101E @ 70	T50	50	3,5 Kg
VI&P-AIRBORNE 10	Evolution Extraordinary		Plastic bobbin	mm 245v165v120 Hele @ 45	B100		
	performance,	Ø 10,3 mm	1	mm. 345x165x130 Hole Ø 45	1	100	7,8 Kg
M&P-AIRBORNE 10	45% lighter. For optimal	0,405 inches	Plastic bobbin	mm. 345x325x130 Hole Ø 45	B200	200	14,8 Kg
M&P-AIRBORNE 10	DXpedition duty.	4	Wooden drum	mm. 500x360x160 Hole Ø 80	B500	500	38,35 Kg
M&P-AIRBORNE 10	Waterproof		Wooden drum	mm. 750x335x210 Hole Ø 70	B1000	1000	82,8 Kg
W&P-BROAD-P <mark>ROC 50</mark>	For Underground	Ø 13 4	Wooden drum	mm. 500x360x160 Hole Ø 80	B400	400	71,35 Kg
Double Jacket	Laying with	Ø 12,4 mm 0,488 inches		1			
M&P-BROAD-PROC 50	flooding.		Wooden drum	mm. 750x335x210 Hole Ø 70	B800	800	148,8 Kg
			Shrinkwrapped coil.		AR25	25	4,35 Kg
M&P-ULTRAFLEX 13	Half inch		Shrinkwrapped coil.		AR50	50	8,7 Kg
and	but	Ø 12,7 mm 0,5 inches	Plastic bobbin.	mm. 400x230x200 Hole Ø 65	B100	100	20,4 Kg
M&P-HYPERFLEX 13	Very flexible	0,0 1101100	Wooden drum	mm. 500x360x160 Hole Ø 80	B300	300	55,5 Kg
			Wooden drum	mm. 750x335x210 Hole Ø 70	B800	800	152 Kg

Unwinders are sold separately.

EXCELLENT QUALITY PROFESSIONAL CONNECTORS

Extensively tested by our laboratory they have shown, due to their high build quality, very low VSWR levels and impedance alteration.

The information on this brochure is purely indicative. Messi & Paoloni reserves the right to make any changes to the models described in this brochure at any time for technical or market reasons. Layout: Marco Frapiccini - Photography, graphic art, supervision Stefano Messi --- Special thanks to Marco Olivieri (IW6DCN) and Roberto Moroni (M&P - R&D)

40